Schedule 1 Site Specific Expenses

NORTHERN UTILITIES, INC.- NEW HAMPSHIRE DIVISION REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING 2021-2022 ENVIRONMENTAL RESPONSE COSTS SITE SPECIFIC EXPENSES

Line Description

•		Juli 1	.,		/13 11/13-		.,	,	11/10-10/17	11/1/-10/10	11/10-10/13	11110 10120	11/20-10/21		11/22-1		/23=10/24	11/24=10/23	11/23=10/20	11/20=10/27	11/2/-10/20	
ENVIRONMENTAL RESPONSE COST (ERC)																						
1 July 10 - June 11 Expenses Amortization (1/7)	\$	121,209 \$	17,316	\$ 17,3	16 \$ 1	7,316 \$	17,316 \$	17,316	\$ 17,316	\$ 17,316												
2 July 11 - June 12 Expenses Amortization (1/7)	\$	159,020		\$ 22,7	17 \$ 2	2,717 \$	22,717 \$	22,717	\$ 22,717	\$ 22,717	\$ 22,717											
3 July 12 - June 13 Expenses Amortization (1/7)	\$	175,406			\$ 2	5,058 \$	25,058 \$	25,058	\$ 25,058	\$ 25,058	25,058 \$	25,058										
4 July 13 - June 14 Expenses Amortization (1/7)	\$	40,881				\$	5,840 \$	5,840	\$ 5,840	\$ 5,840	5,840 \$	5,840	5,840									
5 July 14 - June 15 Expenses Amortization (1/7)	\$	112,198					\$	16,028	\$ 16,028	\$ 16,028	16,028 \$	16,028	16,028	\$ 16,028								
6 July 15 - June 16 Expenses Amortization (1/7)	\$ 2,	,179,885							\$ 311,412	\$ 311,412	311,412 \$	311,412	311,412	\$ 311,412	\$ 311	,412						
7 July 16 - June 17 Expenses Amortization (1/7)	\$	54,154								\$7,736	\$7,736	\$7,736	\$7,736	\$7,736	\$7	,736	\$7,736					
8 July 17 - June 18 Expenses Amortization (1/7)	\$	283,143									\$40,449	\$40,449	\$40,449	\$40,449	\$40	,449	\$40,449	\$40,449				
9 July 18 - June 19 Expenses Amortization (1/7)	\$	203,357									\$	29,051	29,051	\$ 29,051	\$ 29	,051 \$	29,051 \$	29,051 \$	29,051			
10 July 19 - June 20 Expenses Amortization (1/7)	\$	77,165										\$	11,024	\$ 11,024	\$ 11.	,024 \$	11,024 \$	11,024 \$	11,024 \$	11,024		
11 July 20 - June 21 Expenses Amortization (1/7)	\$	118,256												\$ 16,894	\$ 16	,894 \$	16,894 \$	16,894 \$	16,894 \$	16,894 \$	16,894	
12 July 21 - June 22 Expenses Amortization (1/7)	\$	48,434													\$ 6,	,919 \$	6,919 \$	6,919 \$	6,919 \$	6,919 \$	6,919 \$	6,919
13 Subtotal (Line 1 through Line 11)	\$ 3,	,573,108 \$	17,316	\$ 40,0	33 \$ 6	5,091 \$	70,931 \$	86,959	\$ 398,371	\$ 406,108	\$ 429,241 \$	435,575	421,540	\$ 432,594	\$ 423.	,485 \$	112,073 \$	104,336 \$	63,887 \$	34,836 \$	23,813 \$	6,919
Subtotal (Line 1 through Line 11) Add: Excess amortization from prior years (from schedule 5, Line 9)	\$ 3, \$,573,108 \$			33 \$ 6			-	\$ 398,371 \$ -							.485 \$	112,073 \$	104,336 \$			23,813 \$	
14 Add: Excess amortization from prior			-	\$ -	\$	- \$	- \$	-	\$ -		- \$	- 8	-	\$ -	\$				- \$	- \$	- \$	-
Add: Excess amortization from prior years (from schedule 5, Line 9) Less: Excess amortization to be	\$	- \$ - \$; -	\$ - \$ -	\$	- \$	- s	-	\$ - \$ -	\$ -	s - \$	- 5	-	\$ -	s	- \$	- \$	- \$	- \$	- \$	- \$	-
14 Add: Excess amortization from prior years (from schedule 5, Line 9) 15 Less: Excess amortization to be deferred (from schedule 5, Line 8) 16 Total Environmental Response cost	\$	- \$ - \$,573,108 \$	5 - 5 - 6 17,316	\$ - \$ 40,0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ 5,091 \$ 6,578 \$ 6,303 \$ 5,406 \$	- \$ 70,931 \$ 69,262 \$ 113,586 \$ 150,348 \$ 40,881 \$	51,947 90,869 125,290 35,041 112,198	\$ - \$ 398,371 \$ 34,631 \$ 68,151 \$ 100,232 \$ 29,201 \$ 96,170 \$ 2,179,885	\$ - : \$ 406,108 : \$ 17,316 \$ 45,434 : \$ 75,174 : \$ 23,361 : \$ 80,141 : \$ 1,868,473 : \$ 54,154 :	\$ - \$ \$ 429,241 \$ \$ 22,717 \$ 50,116 \$ \$ 17,521 \$ \$ 64,113 \$ \$ 1,557,061 \$ \$ 46,418 \$ \$ 283,143 \$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	\$ 421,540 \$ 5,840 \$ 32,057 \$ 934,236 \$ 30,945 \$ 202,245 \$ 174,306 77,165	\$ - \$ 432,594 \$ 16,028 \$ 622,824 \$ 23,209 \$ 161,796 \$ 145,255 \$ 66,141	\$ \$ 423 \$ 423 \$ 311 \$ 15 \$ 121 \$ 116 \$ 55 \$ 101	- \$ - \$.412 .473 \$.347 \$.204 \$.118 \$.362 \$	- \$ - \$ 112,073 \$	- \$ - \$ 104,336 \$	- \$ - \$ 63,887 \$ 29,051 22,047 \$ 50,681 \$	- \$ - \$ 34,836 \$	- \$	6,919
14 Add: Excess amortization from prior years (from schedule 5, Line 9) 15 Less: Excess amortization to be deferred (from schedule 5, Line 8) 16 Total Environmental Response cost to be recovered (ERC) 17 July 2010 - June 2011 Unamortized beginning balance 18 July 2011 - June 2012 Unamortized beginning balance 20 July 2013 - June 2013 Unamortized beginning balance 20 July 2013 - June 2014 Unamortized beginning balance 21 July 2014 - June 2015 Unamortized beginning balance 22 July 2016 - June 2017 Unamortized beginning balance 23 July 2016 - June 2017 Unamortized beginning balance 24 July 2017 - June 2018 Unamortized beginning balance 25 July 2018 - June 2019 Unamortized beginning balance 25 July 2018 - June 2019 Unamortized beginning balance 26 July 2019 - June 2020 Unamortized beginning balance 27 July 2020 - June 2021 Unamortized beginning balance 27 July 2020 - June 2021 Unamortized beginning balance	\$	- \$ - \$.573,108 \$; - ; 17,316 ; 121,209	\$ - \$ 40,0 \$ 103,8 \$ 159,0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ 5,091 \$ 6,578 \$ 6,303 \$ 5,406 \$ \$	- \$ 70,931 \$ 69,262 \$ 113,586 \$ 150,348 \$ 40,881 \$	51,947 90,869 125,290 35,041 112,198	\$ \$ 398,371 \$ 34,631 \$ 68,151 \$ 100,232 \$ 29,201 \$ 96,170 \$ 2,179,885	\$ - : \$ 406,108 : \$ 17,316 \$ 45,434 : \$ 75,174 : \$ 23,361 : \$ 80,141 : \$ 1,868,473 : \$ 54,154 :	\$ - \$ \$ 429,241 \$ \$ 22,717 \$ 50,116 \$ \$ 17,521 \$ \$ 84,113 \$ \$ 46,413 \$ \$ 1,557,061 \$ \$ 46,418 \$ \$ 283,143 \$	25,058 11,680 48,085 1,245,649 38,681 242,634 203,357 \$	\$ 421,540 \$ 5,840 \$ 5,840 \$ 934,257 \$ 934,256 \$ 30,945 \$ 202,245 \$ 174,306 \$ 77,165	\$ - \$ 432,594 \$ 16,028 \$ 622,824 \$ 23,209 \$ 161,798 \$ 161,798 \$ 161,798 \$ 161,798	\$ 311. \$ 15. \$ 121. \$ 16. \$ 55. \$ 101. \$ 48.	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ 112,073 \$ 7,736 80,888 \$ 87,153 \$ 44,094 \$ 84,468 \$ 41,515 \$	- \$ - \$ 104,336 \$ 104,439 \$ 58,102 \$ 33,071 \$ 67,575 \$ 34,596 \$	- \$ 63,887 \$ 63,887 \$ 29,051 \$ 20,07 \$ 50,681 \$ 27,677 \$	- \$ - \$ 34,836 \$	- \$ - \$ 23,813 \$	6,919
14 Add: Excess amortization from prior years (from schedule 5, Line 9) 15 Less: Excess amortization to be deferred (from schedule 5, Line 8) 16 Total Environmental Response cost to be recovered (ERC) 17 July 2010 - June 2011 Unamortized beginning balance 18 July 2011 - June 2012 Unamortized beginning balance 20 July 2013 - June 2013 Unamortized beginning balance 21 July 2014 - June 2015 Unamortized beginning balance 22 July 2016 - June 2016 Unamortized beginning balance 23 July 2016 - June 2018 Unamortized beginning balance 24 July 2017 - June 2018 Unamortized beginning balance 25 July 2018 - June 2019 Unamortized beginning balance 26 July 2019 - June 2020 Unamortized beginning balance 27 July 2019 - June 2021 Unamortized beginning balance 27 July 2020 - June 2021 Unamortized beginning balance 28 July 2021 - June 2021 Unamortized beginning balance 28 July 2021 - June 2022 Unamortized beginning balance 29 July 2021 - June 2022 Unamortized beginning balance	\$	- \$ - \$.573,108 \$; - ; 17,316 ; 121,209	\$ - \$ 40,0 \$ 103,8 \$ 159,0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ 5,091 \$ 6,578 \$ 6,303 \$ 5,406 \$ \$	- \$ 70,931 \$ 69,262 \$ 113,586 \$ 150,348 \$ 40,881 \$	51,947 90,869 125,290 35,041 112,198	\$ \$ 398,371 \$ 34,631 \$ 68,151 \$ 100,232 \$ 29,201 \$ 96,170 \$ 2,179,885	\$ 406,108 : \$ 17,316 \$ 45,434 \$ 75,174 \$ 23,361 \$ 80,141 \$ 1,868,473 \$ 54,154 \$	\$ - \$ \$ 429,241 \$ \$ 22,717 \$ 50,116 \$ \$ 17,521 \$ \$ 84,113 \$ \$ 46,413 \$ \$ 1,557,061 \$ \$ 46,418 \$ \$ 283,143 \$	25,058 11,680 48,085 1,245,649 38,681 242,634 203,357 \$	\$ 421,540 \$ 5,840 \$ 5,840 \$ 934,257 \$ 934,256 \$ 30,945 \$ 202,245 \$ 174,306 \$ 77,165	\$ - \$ 432,594 \$ 16,028 \$ 622,824 \$ 23,209 \$ 161,798 \$ 161,798 \$ 161,798 \$ 161,798	\$ 311. \$ 15. \$ 121. \$ 16. \$ 55. \$ 101. \$ 48.	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ 112,073 \$ 7,736 80,888 \$ 87,153 \$ 44,094 \$ 84,468 \$ 41,515 \$	- \$ - \$ 104,336 \$ 104,439 \$ 58,102 \$ 33,071 \$ 67,575 \$ 34,596 \$	- \$ 63,887 \$ 63,887 \$ 29,051 \$ 20,07 \$ 50,681 \$ 27,677 \$	- \$ - \$ 34,836 \$	- \$ - \$ 23,813 \$ 16,894 13,838 \$	6,919
14 Add: Excess amortization from prior years (from schedule 5, Line 9) 15 Less: Excess amortization to be deferred (from schedule 5, Line 8) 16 Total Environmental Response cost to be recovered (ERC) 17 July 2010 - June 2011 Unamortized beginning balance 19 July 2011 - June 2012 Unamortized beginning balance 20 July 2013 - June 2013 Unamortized beginning balance 21 July 2014 - June 2015 Unamortized beginning balance 22 July 2015 - June 2014 Unamortized beginning balance 23 July 2016 - June 2017 Unamortized beginning balance 24 July 2017 - June 2018 Unamortized beginning balance 25 July 2018 - June 2019 Unamortized beginning balance 26 July 2019 - June 2020 Unamortized beginning balance 27 July 2020 - June 2022 Unamortized beginning balance 28 July 2021 - June 2022 Unamortized beginning balance 29 Total Unamortized beginning balance 29 Total Unamortized beginning balance	\$	- \$ - \$.573,108 \$; - ; 17,316 ; 121,209	\$ - \$ 40,0 \$ 103,8 \$ 159,0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$ - \$ 5,091 \$ 6,578 \$ 6,303 \$ 5,406 \$ \$	- \$ 70,931 \$ 69,262 \$ 113,586 \$ 150,348 \$ 40,881 \$	51,947 90,869 125,290 35,041 112,198	\$ \$ 398,371 \$ 34,631 \$ 68,151 \$ 100,232 \$ 29,201 \$ 96,170 \$ 2,179,885	\$ 406,108 : \$ 406,108 : \$ 17,316 \$ 45,434 \$ 75,174 \$ 23,361 \$ 80,141 \$ 1,868,473 : \$ 54,154 :	\$ - \$ \$ 429,241 \$ \$ 22,717 \$ 50,116 \$ \$ 17,521 \$ \$ 84,113 \$ \$ 46,413 \$ \$ 1,557,061 \$ \$ 46,418 \$ \$ 283,143 \$	25,058 11,680 48,085 1,245,649 38,681 242,634 203,357 \$	\$ 421,540 \$ 5,840 \$ 5,840 \$ 934,257 \$ 934,256 \$ 30,945 \$ 202,245 \$ 174,306 \$ 77,165	\$ - \$ 432,594 \$ 16,028 \$ 622,824 \$ 23,209 \$ 161,798 \$ 161,798 \$ 161,798 \$ 161,798	\$ 311. \$ 15. \$ 121. \$ 16. \$ 55. \$ 101. \$ 48.	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	- \$ - \$ 112,073 \$ 7,736 80,888 \$ 87,153 \$ 44,094 \$ 84,468 \$ 41,515 \$	- \$ - \$ 104,336 \$ 104,439 \$ 58,102 \$ 33,071 \$ 67,575 \$ 34,596 \$	- \$ 63,887 \$ 63,887 \$ 29,051 \$ 20,07 \$ 50,681 \$ 27,677 \$	- \$ - \$ 34,836 \$	- \$ - \$ 23,813 \$ 16,894 13,838 \$	6,919

11/11 - 10/12 11/12 - 10/13 11/13 - 10/14 11/14 - 10/15 11/15 - 10/16 11/16 - 10/17 11/17 - 10/18 11/18 - 10/19 11/19 - 10/20 11/20 11/20 - 10/20 11/

Schedule 2 Cost Summary

Schedule 2 Page 1 of 1

Remediation Adjustment Clause Compliance Filing 2022 - 2023 Environmental Response Costs Summary

LINE NO.	DESCRIPTION	LEGAL EXPENSE		CONSULTING EXPENSE	i	REME EXPE	DIATION	OTHER EXPENS	2E		OVERABLE ENSE	INSUR 3RD P. EXPEN		THIRI	RANCE & D PARTY OVERIES
140.	BEGGINI HON	LXI LIVOL		LXI LINOL		L/II LI	INOL	LXI LIN		LAIL	LINOL	LXI LI	NOL .	INLOC	VERGEO
1	Portsmouth Gas Works	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
2	Exeter Gas Works	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
3	Rochester Gas Works	\$	-	\$	-	\$	48,274.66	\$	159.39	\$	48,434.05	\$	-	\$	-
4	Dover Gas Works	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
5	Somerworth Gas Works	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
	TOTALS	\$	-	\$	-	\$	48,274.66	\$	159.39	\$	48,434.05	\$		\$	

Schedule 3 Invoice Lists

REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING 2022 - 2023 Environmental Response Costs Site 11

Exeter Gas Works

LINE	VENDOR NAME	INVOICE NO.	LEGAL EXPENSE	CONSULTING EXPENSE	REMEDIATION EXPENSE	OTHER EXPENSE	TOTAL
	None						\$ -
							\$ -
							\$ -
TOTAL			\$ -	\$ -	\$ -	\$ -	\$ -

REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING 2022 - 2023 Environmental Response Costs Site 13

Rochester	\sim	11/05/0
Rochester	いっとい	VVOIKS

			LEGAL	CONSU	LTING	DE	MEDIATION		OTHER	
LINE	VENDOR NAME	INVOICE NO.	EXPENSE	EXPE			XPENSE	Е	XPENSE	TOTAL
1 AECOM		2000514190	\$ -	\$	-	\$	9,538.14	\$	-	\$ 9,538.14
2 AECOM		2000521235				\$	2,573.21	\$	-	\$ 2,573.21
3 AECOM		2000523418				\$	1,305.00	\$	-	\$ 1,305.00
4 AECOM		2000525319				\$	1,360.00	\$	-	\$ 1,360.00
5 AECOM		2000535749				\$	2,115.06	\$	-	\$ 2,115.06
6 AECOM		2000536962				\$	5,324.38	\$	-	\$ 5,324.38
7 AECOM		2000549490				\$	2,190.00	\$	-	\$ 2,190.00
8 AECOM		2000559945				\$	9,035.96	\$	-	\$ 9,035.96
9 AECOM		2000567400				\$	3,706.26	\$	-	\$ 3,706.26
10 AECOM		2000580518				\$	2,129.51	\$	-	\$ 2,129.51
11 AECOM		2000588365				\$	1,789.12	\$	-	\$ 1,789.12
12 AECOM		2000604281				\$	2,707.00	\$	-	\$ 2,707.00
13 AECOM		2000626357				\$	1,746.11	\$	-	\$ 1,746.11
14 AECOM		2000633989				\$	2,754.91	\$	-	\$ 2,754.91
15 CITY OF I	ROCHESTER	14100490				\$	-	\$	64.41	\$ 64.41
16 CITY OF I	ROCHESTER	101640				\$	-	\$	34.98	\$ 34.98
17 CITY OF I	ROCHESTER	14113717				\$	-	\$	30.00	\$ 30.00
18 CITY OF I	ROCHESTER	14121655				\$	-	\$	30.00	\$ 30.00
19 TOTAL			\$ -	\$	-	\$	48,274.66	\$	159.39	\$ 48,434.05

REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING 2022 - 2023 Environmental Response Costs Site 14

Somersworth Gas Works

			<u>-</u>	•			<u> </u>	•				
			LE	GAL	CON	NSULTING	REMI	EDIATION		OTHER		
LINE	VENDOR NAME	INVOICE NO.	EXP	ENSE	ΕX	KPENSE	EX	PENSE	E	EXPENSE	TOTAL	
1	NONE		\$	-	\$	-	\$	-	\$	-	\$	-
2			\$	-	\$	-	\$	-	\$	-	\$	-
3 TOTAL			\$	-	\$	-	\$	_	\$	-	\$	-

REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING

2022 - 2023 Environmental Response Costs Dover Gas Works

Cocheco and Portland Streets, Dover, NH

Schedule 3D

LINE		VENDOR NAME	INVOICE NO.	LEGAL EXPENSE	CONSULTING EXPENSE	REMEDIATION EXPENSE	OTHER EXPENSE		TOTAL
1		None						\$	-
2								\$	-
3								\$	-
	TOTAL			\$ -	- \$ -	\$ -	\$	- \$	-

REMEDIATION ADJUSTMENT CLAUSE COMPLIANCE FILING 2022 - 2023 Environmental Response Costs Portsmouth Gas Works

LINE	VENDOR NAME	INVOICE NO.	LEGAL EXPENSE	CONSULTING EXPENSE	REMEDIATION EXPENSE	OTHER EXPENSE	TOTAL
1	None						\$ -
2							\$ -
3							\$ -
TOTA	AL .		\$ -	\$ -	\$ -	\$ -	\$ -

Schedule 4 Site Narratives See Separate Files

Attachment 3B Rochester Invoices

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America **Account Number 5800937020** ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apolio Drive, Chelmsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON **6 LIBERTY LANE W** HAMPTON, NH 03842 United States

Agreement Description: TAR 01/12/21

Invoice Date: 07-JUL-21 nvoice Number: 2000514190

Payment Term: 30 DAYS

Please reference Invoice Number and Project Number with Remittance

Project Number : 60139732 Bill Through Date: 01-MAY-21 - 02-JUL-21

Project Name : 13046002 Rochester GWP

Task Number: 2100

Task Name : M. McCabe-Field Rate Chircon

		1 444 1 444 1 444 1 444 1 444)[0 M - 1		
Labor Bill Rate					
Employee Name/Title	<u> Title/Expenditure</u>	Date	<u>Hours</u>	Bill Rate	Billed Amt
McCabe, Mark M	P20	07-MAY-21	2.50	215.00	537.50
McCabe, Mark M	P20	14-MAY-21	2.00	215.00	430.00
McCabe, Mark M	P20	11-JUN-21	3.00	215.00	645.00
McCabe, Mark M	P20	25-JUN-21	2.00	215.00	430.00
Total Labor Bill R	ate		9.50		2,042.50
Task Total : M. McCabe-l	Field Rate				2,042.50

Task Number : 2600	Task Name: 2020 Field Invest	ERC
--------------------	------------------------------	-----

Labor Bill Rate					
Employee Name/Title	Title/Expenditure	<u>Date</u>	Hours	Bill Rate	Billed Amt
Callahan, Colin P	P13	07-MAY-21	4.00	115.00	460.00
Callahan, Colin P	P13	28-MAY-21	1.00	115.00	115.00
Callahan, Colin P	P13		4.00	115.00	460.00
Callahan, Co lin P	P13		4.00	115.00	480.00
Callahan, Colin P	P13	25-JUN-21	2.00	115.00	230.00
Callahan, Colin P	P13	02-JUL-21	4.00	115.00	460.00
Howe, Charles S	P16	AUG 2 2024-MAY-21	0.50	135.00	67.50
Howe, Charles S	P16	04-JUN-21	7.50	135.00	1,012.50
Howe, Charles S	P16	11-JUN-21	6.00	135.00	810.00
McCarthy, Ryan S	P16	07-MAY-21	2.00	170.00	340.00
McCarthy, Ryan S	P16	ACCOUNTS PAYABLITAY-21	0.50	170.00	85.00
McCarthy, Ryan S	P16	28-MAY-21	0.50	170.00	85.00
McCarthy, Ryan S	P16	04-JUN-21	1.00	170.00	170.00
McCarthy, Ryan S	P16	11-JUN-21	1.50	170.00	255.00
McCarthy, Ryan S	P16	18-JUN-21	0.50	170.00	85.00
McCarthy, Ryan S	P16	25-JUN-21	0.50	170.00	85.00
White, Taylor Patrick (Taylor)	P10	21-MAY-21	2.00	83.00	166.00
Total Labor Bill Rate			41.50	_	5,346.00

OTAI	Labor	Biii Kate	

SubConsul	tant					
Expenditure Type Professional Services	Employee/Vendor Name EUROFINS SPECTRUM ANALYTICAL INC	<u>Date</u> 13-MAY-21	Inv Number RCLS2101225	Raw Cost 708.00	Multiplier 1.0800	Billed Amt 764.64

Total SubConsultant

708.00

764.64

Task Total : 2020 Field Invest

6,110.64

Task Number : 2700 Task Name : 2020 Report ELC

Callainan, Colin P	Tesk Huiliber . 2100		I den (leitie . 20	20 Report OCO			
Calahan, Colin P	Labor Bill R	ate					
Pide			<u>ne</u>		<u>Hours</u>	Bill Rate	Billed Amt
Add Part Pid	allahan, Colin P	P13		07-MAY-21	4.00	115.00	460.00
Total Labor Bill Rate Task Number : 2000 Task Number : 2000 Labor Bill Rate milovee NameTitle Task Name : Field Samp Analysis Task Name : Task Name : Util Con ovraitaRpt TitleExpenditure milovee NameTitle num, Charles S Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task Name : Task Name : Util Con ovraitaRpt Task		P13		14-MAY-21	2.00	115.00	230.00
Task Number : 2000	leary, Maryanne V	P14		07-MAY-21	1.50	115.00	172.50
Task Number : 2900 Labor Bill Rate mploves Name/Bill unt, Audrey Clarke P11 Audrey Clarke P11 Od-JUN-21 Total Labor Bill Rate Total Labor Bill Rate Total Labor Bill Rate Title/Expenditure Task Name : Field Samp Analysis EC Labor Bill Rate Total Labor Bill Rate Total Labor Bill Rate Title/Expenditure P15 Task Name : Field Samp Analysis EC Labor Bill Rate Title/Expenditure P16 Task Name : Field Samp Analysis EC Total Labor Bill Rate Title/Expenditure P16 Task Name : Util Con ovvisiteRpt Task Name : Util Con ovvisiteRpt CAUNCO Labor Bill Rate Title/Expenditure P16 Task Name : Util Con ovvisiteRpt CAUNCO Labor Bill Rate Title/Expenditure P16 Task Name : Util Con ovvisiteRpt Total Labor Bill Rate Total Labor Bill Rate Total Labor Bill Rate Rate Cast Subconsultant Expenditure Type Confessional Services Expenditure Services	Total Labor	Bill Rate			7.50	_	862.50
Labor Bill Rate Moure March Ma	Task Total : 2020 F	eport					862.50
	Task Number : 2800		Task Name : HA	ASP ERC			
International Center Pi11	Labor Bill R	ate					
Link Autrey Clarke	mployee Name/Title	<u>Title/Expenditur</u>	re	Date	Hours	Bill Rate	Billed Amt
Total Labor Bill Rate	unt, Audrey Clarke	P11	_	14-MAY-21			138.75
Task Number : 2000 Task Name : Field Samp Analysis EL C	unt, Audrey Clarke	P11		04-JUN-21	0.50		46.25
Task Total : HASP Task Name : Field Samp Analysis ECC	ray, Dale W (Pete)	P15					125.00
Task Number : 2900	Total Labor	Bill Rate			3.00	-	310.00
Task Number : 2900	Task Total : HASP						310.00
Labor Bill Rate Millor P P13							
Ittle/Expenditure Ittl	Task Number : 2900	•	Task Name : Fig	eld Samp Analysis	ERC		
Pistal P							
Total Labor Bill Rate Total Bill Rate			<u>re</u>	<u>Date</u>	<u>Hours</u>	Bill Rate	Billed Amt
Total Labor Bill Rate		P13		21-MAY-21	2.00	115.00	230.00
Task Number : 3100 Task Name : Util Con ovrsite/Rpt	owe, Charles S	P16		07 - MAY-21			2,025.00
Task Number : 3100 Task Name : Util Con ovrsite/Rpt	Total Labor	Bill Rate			17.00	-	2,255.00
Labor Bill Rate Intelligence Date Hours Bill Rate Investment Date Investment Date Investment Investm	Task Total : Field 8	amp Analysis					2,255.00
Labor Bill Rate Employee Name/Title Title/Expenditure P18 07-MAY-21 0.50 135.00 67.	Task Number : 3100		Task Name · Ut	il Con ovesite/Ret	3410000		
Date			Talk Hallis , Gt	ii ooii ori alteritet	AIVII (I		
Howe, Charles S			re	<u>Date</u>	Hours	Bill Rate	Billed Amt
Total Labor Bill Rate SubConsultant SubC	lowe, Charles S	P16		07-MAY-21	0.50		67.50
SubConsultant SubConsultan	lunt, Audrey Clarke	P11		14-MAY-21			231.25
Employee/Vendor Name Date Inv Number Raw Cost Multiplier Billed Al	Total Labor	Bill Rate			3.00	_	298.75
Professional Services	SubConsult	ant					
Professional Services	Expenditure Type	Employee/Vendor Name	Date	Inv Number	Raw Cost	Multiplier	Billed Amt
ANALYTICAL INC Professional Services	Professional Services						-764.64
ANALYTICAL INC Professional Services EUROFINS SPECTRUM ANALYTICAL INC Professional Services EUROFINS SPECTRUM 18-MAY-21 S2101311 -708.00 1.0800 -764. ANALYTICAL INC Professional Services EUROFINS SPECTRUM 18-MAY-21 S2101312 991.20 1.0800 1,070. Total SubConsultant 991.20 1.0800 1,070. Reimbursable Expenditure Type Employee/Vendor Name Unch Howe, Charles S 06-MAY-21 EXP7815182 18.37 1.0800 19. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.24 1.0800 19. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.24 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 34.18 1.							
Total SubConsultant	rofessional Services		13-MAY-21	S2101225	708.00	1.0800	764.64
ANALYTICAL INC EUROFINS SPECTRUM ANALYTICAL INC Total SubConsultant 991.20 1.0800 1.070. Reimbursable Expenditure Type Employee/Vendor Name Unch Howe, Charles S 06-MAY-21 EXP7815182 18.37 1.0800 19. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.24 1.0800 19. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.24 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 22. Materials Howe, Charles S 06-MAY-21 EXP7838782 21.04 1.0800 32. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.16 1.0800 36. Materials Howe, Charles S 06-MAY-21 EXP7815182 34.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44. Materials Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 44.	rofessional Services		18-MAY-21	S2101309	708.00	1.0800	764.64
ANALYTICAL INC Foressional Services EUROFINS SPECTRUM ANALYTICAL INC Total SubConsultant Perfessional Services Fundamental Services EUROFINS SPECTRUM ANALYTICAL INC Total SubConsultant Perfessional Services Fundamental Services Eurofins Spectrum Analytical Inc Reimbursable Expenditure Type Employee/Vendor Name Expenditure Type Employee/Vendor Name Expenditure Type Employee/Vendor Name Expenditure Type Expenditure Type Employee/Vendor Name Expenditure Type Expenditur	Professional Sandoon		40 MAV 24	P0404044	700.00		
Total SubConsultant 991.20 1,070.	TO COSTOTIBLE SELVICES	ANALYTICAL INC	10-MA 1-21	32101311	-700.00	1.0800	-/04.64
Reimbursable Expenditure Type Employee/Vendor Name Date Inv Number Raw Cost Multiplier Billed All Discrete Inv Number	Professional Services		18-MAY-21	S2101312	991.20	1.0800	1,070.50
Employee/Vendor Name	Total SubCo	insultant			991.20		1,070.50
unch Howe, Charles S 06-MAY-21 EXP7815182 18.37 1.0800 19. unch Howe, Charles S 06-MAY-21 EXP7838782 18.37 1.0800 19. Asterials Howe, Charles S 05-MAY-21 EXP7838782 21.24 1.0800 22. Asterials Howe, Charles S 06-MAY-21 EXP7838782 2.10 1.0800 2. Asterials Howe, Charles S 06-MAY-21 EXP7838782 2.10 1.0800 2. Asterials Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. Asterials Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. Fixed All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. Total Reimbursable 173.33 186.	Reimbursab	le					
Lunch Howe, Charles S 06-MAY-21 EXP7838782 18.37 1.0800 19. Atterials Howe, Charles S 05-MAY-21 EXP7838782 21.24 1.0800 22. Atterials Howe, Charles S 06-MAY-21 EXP7838782 21.0 1.0800 2. Atterials Howe, Charles S 06-MAY-21 EXP7838782 2.10 1.0800 2. Atterials Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. Atterials Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. Travel All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. Travel All Other Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable 173.33 186.					Raw Cost	<u>Multiplier</u>	Billed Amt
Idaterials Howe, Charles S 05-MAY-21 EXP7838782 21.24 1.0800 22. Idaterials Howe, Charles S 06-MAY-21 EXP7838782 2.10 1.0800 2. Ideage Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. Ideage Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. Ideage Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. Ideage Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable 173.33 186.					18.37	1.0800	19.84
taterials Howe, Charles S 06-MAY-21 EXP7838782 2.10 1.0800 2. fileage Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. fileage Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. fileage Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. fileage Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. fileage Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. formal Reimbursable 173.33 186.							19.84
fileage Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. fileage Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. ravel All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. ravel All Other Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable						1.0800	22.94
Mileage Howe, Charles S 05-MAY-21 EXP7815182 34.16 1.0800 36. Mileage Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. ravel All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. ravel All Other Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable 173.33 186.				EXP7838782	2.10		2.27
Releage Howe, Charles S 06-MAY-21 EXP7815182 72.24 1.0800 78. ravel All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. ravel All Other Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable 173.33 186.	fileage		05-MAY-21	EXP7815182	34.16	1.0800	36.89
ravel All Other Howe, Charles S 05-MAY-21 EXP7815182 2.46 1.0000 2. ravel All Other Howe, Charles S 06-MAY-21 EXP7815182 4.39 1.0000 4. Total Reimbursable 173.33 186.	_			and the second s			78.02
Total Reimbursable 173.33 186.							2.46
							4.39
	Total Reimb	ur sabl e			173.33	-	186.65
Task Total : Util Con ovrsite/Rpt 1,555.	Task Total : Util Co	n ovrsite/Rpt					1,555.90

Project Total : 13046002 Rochester 0	GWP				13,136.54
Invoice Summaries					13,136.54
Total Current Amount :					0.00
Retention Amount : Pre-Tax Amount :					13,136.54
Tax Amount :					0.00
Total Invoice Amount :					13,136.54
Billing Summaries	Current	Prior	Total	Limit	Remain
Billing Summary	<u>Current</u> 13,136.54	542,848.99	555,985.53	587,033.69	31,048.16
Billings Tax	0.00	0.00	0.00	-	
Billing Total :	13,136.54	542,848.99	555,985.53		

DO 76538

30.40.27.00.932.01.00

\$ 3,598.40 \$ 9,538.14 \$ 13,136.54

AECOM 250 Apollo Drive Chelmsford, MA 01824 ecom com

July 7, 2021

Our Reference

AECOM Ref. No: 60139732-Inv. 84

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities related to Groundwater Permit GWP-198712002-R-006 Petrolane/Northern Utilities, Inc. Site (DES #198712002, Project #432) **AECOM Project # 60139732** Period Ending June 18, 2021

Dear Mr. Murphy:

Enclosed for your information is the invoice and Progress Report for professional environmental consulting services related to groundwater monitoring as specified in the groundwater permit (GWP) for the site (GWP-198712002-R-006) issued by the New Hampshire Department of Environmental Services (NHDES).

Project Budget Information

This invoice is for \$13,136.54. The total authorized budget for 2020/21 is \$279,360. The proposals for 2020/21 GWP activities included the following: performing one round of groundwater monitoring each year as specified in the GWP for the site and preparing an annual groundwater monitoring report consistent with those that have been submitted in the past (Comprehensive Groundwater Quality Summary Reports are to be submitted every two years [January 2022]). AECOM has prepared a work plan for a source investigation in response to a meeting with Unitil, AECOM, and Amy Doherty at NHDES on February 5, 2020, as well as a waste management plan in response to a Unitil request to consult on environmental issues related to the upgrade of utility infrastructure at the Site. Add-ons to the original proposal included tasks for on-call consulting, scope of work/work plan development, the field investigation, pipeline construction support/consulting, associated reporting for the above referenced investigation, health and safety plan updates, waste profile field sampling and analysis, supplemental field sampling and analysis, and utility construction oversight and reporting. As is detailed below, Tasks 2600, 2900, and 3100 are billed as redundancies for convenience and will cease upon depletion.

This project was proposed on a time and materials basis to be billed on a monthly basis.

Task 2100 2021 Strategic On-Call Consulting

This task has been established for Mr. Mark McCabe to support the project in a strategic senior consulting capacity, and during this reporting period captures agency follow-up related to the source investigation and development of the site investigation report. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$2,042.50.

Task 2600 2021 Field Investigation

During this invoicing period AECOM provided oversight support to the HDD installation. This included visits to the site and delivery of analytical laboratory samples. Other costs included are related to laboratory analytical services. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$6,110.64.

Task 2700 2021 Report

During this invoicing period AECOM submitted the Site Investigation report. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$862.50.

Task 2800 2021 Health And Safety Plan Updates

During this invoicing period AECOM completed the annual Health and Safety Plan updates. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$310.00.

Task 2900 2021 Field Sampling Analysis

During this invoicing period AECOM provided oversight support to the HDD installation. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$2,255.00.

Task 3100 2021 Utility Construction Oversight/Reporting

During this invoicing period AECOM provided oversight support to the HDD installation. This included visits to the site and delivery of analytical laboratory samples. Other costs included are related to travel and laboratory analytical services. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$1,555.90.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional services in the future.

Sincerely yours, AECOM

Ryan McCarthy Project Manager AECOM

Attachment

E: ryan.mccarthy@aecom.com

Colin Callahan

Assistant Project Manager

AECOM

E: colin.callahan@aecom.com

Table 1 Invoice Summary Rochester Groundwater Permit GWP-198712002-R-006 Activities May/ June 2021 Billing Period

	Task	Authorized Budget	Previously Involced	Current Invoice	Total Invoiced	Remaining Budget
2100	On-Call Consulting	\$44,500.00	\$42,367.90	\$2,042.50	\$44,410.40	\$89.60
2200	2020 NHDES Modeling Response	\$28,560.00	\$26,737.75	\$0.00	\$26,737.75	\$1,822.25
2300	November 2020 Groundwater Monitoring Event	\$13,900.00	\$12,405.15	\$0.00	\$12,405.15	\$1,494.85
2400	November 2020 Reporting Event	\$5,800.00	\$5,636.25	\$0.00	\$5,636.25	\$163.75
2500	Work Plan Preparation	\$16,700.00	\$16,633.75	\$0.00	\$16,633.75	\$66.25
2600	Field Investigation	\$82,900.00	\$68,182.19	\$6,110.64	\$74,292.83	\$8,607.17
2700	Reporting	\$30,200.00	\$28,596.25	\$862.50	\$29,458.75	\$741.25
2800	HASP Updates	\$2,100.00	\$1,757.50	\$310.00	\$2,067.50	\$32.50
2900	Field Sampling and Analysis	\$13,800.00	\$10,213.10	\$2,255.00	\$12,468.10	\$1,331.90
3100	Utility Construction Oversight and Reporting	\$16,800.00	\$14,978.86	\$1,555.90	\$16,534.76	\$265.24
3200	November 2021 Groundwater Monitoring Event	\$14,000.00	\$0.00	\$0.00	\$0.00	\$14,000.00
3300	November 2021 Reporting Event	\$10,100.00	\$0.00	\$0.00	\$0.00	\$10,100.00
Tota	al	\$279,360.00	\$227,508.70	\$13,136.54	\$240,645.24	\$30,814.20

2020 GWP \$19,700

2020 Site Investigation/ Utility Upgrade \$154,100 2020 Supplemental Investigation - \$44,000 2021 GWP \$33,000

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS **UNITIL SERVICES CORPORATOR 6 LIBERTY LANE W**

HAMPTON, NH 03842 **United States**

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-905-2100 Fax:978-905-2101

Invoice Date: 27-JUL-21 Invoice Number: 2000521235

Agreement Number: EM13046004

Agreement Description: Conversion - 177741

Payment Term: 30 DAYS eement Description: TAR 01/12/21

Please reference Invoice Number and Project Number with Remittance

Project Number

: 60139734

Bill Through Date: 29-MAY-21 - 16-JUL-21

Project Name: UNITIL PHYTOREMEDIATION PROGRAM

Task Number: 1400 Task Name: 2021 Phyto Labor Bill Rate Employee Name/Title Title/Expenditure <u>Date</u> **Hours Bill Rate Billed Amt** Callahan, Colin P P13 11-JUN-21 1.00 125.00 125.00 Callahan, Colin P P13 18-JUN-21 125.00 1.00 125.00 Callahan, Colin P P13 25-JUN-21 2.00 125.00 250.00 Callahan, Colin P P13 02-JUL-21 1.00 125.00 125.00 Callahan, Colin P P13 16-JUL-21 2.00 125.00 250.00 Howe, Charles S P16 25-JUN-21 0.50 135.00 67.50 Hunt, Audrey Clarke P07 25-JUN-21 8.00 55.00 440.00 McCarthy, Ryan S P16 18-JUN-21 0.50 170.00 85.00 McCarthy, Ryan S P16 09-JUL-21 0.50 170.00 85.00 McKenna, James Walter (Walter) P08 25-JUN-21 6.75 65.00 438.75 **Total Labor Bill Rate** 23.25 1,991.25 Reimbursable Expenditure Type Employee/Vendor Name Date Inv Number Raw Cost <u>Multiplier</u> **Billed Amt** Materials Cleary, Maryanne V 18-MAY-21 EXP7851490 358.00 1.0800 386.64 Materials Hunt, Audrey Clarke 22-JUN-21 EXP7896074 15.65 1.0800 16.90 Mileage Hunt, Audrey Clarke 22-JUN-21 RCLEXP7844041 81.20 1.0800 87.70 Mileage McKenna, James Walter (Walter) 22-JUN-21 RCLEXP7871841 84.00 1.0800 90.72 Total Reimbursable 538.85 581.96 Task Total : 2021 Phyto 2,573.21 RECEIVED Project Total: UNITIL PHYTOREMEDIATION PROGRAM 2,573.21 Invoice Summaries AUG 16 2021 2,573.21 Retention Amount:

Total Current Amount:

Pre-Tax Amount: Tax Amount:

Total Invoice Amount:

0.00 2,573.21

ACCOUNTS PAYABLE

0.00 2,573.21

Billing Summaries Billing Summary <u>Current</u> <u>Prior</u> <u>Total</u> <u>Limit</u> Remain Billings 2,573.21 339,349.19 371.078.59 341,922.40 29,156.19 Tax 0.00 0.00 0.00 Billing Total: 2,573.21 339,349.19 341,922.40

16538

30.40.00.00.182.29.00

Page 20 of 92

AECOM 250 Apollo Drive Chelmsford, MA 01824 aecom.com

July 27, 2021

AECOM Reference 60139734-Inv. 109

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2021 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending July 16, 2021

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2021 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Project Budget Information

This invoice is for \$2,573.21. The total authorized budget for this project for the 2021 calendar year is \$22,000. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2021 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1400 2021 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to a Site inspection, the plumber activating the backflow preventer, and a full irrigation event. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$2,573.21.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Ryan McCarthy, MS Project Manager

AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

Table 1 Invoice Summary 2021 Phytoremediation Program June 2021 Billing Period

	Task	1	uthorized Budget	reviously Invoiced	1	Current Invoice	Tot	al Invoiced	emaining Budget
1400	Continued Groundwater Suppression Installation Activities 2021	\$	22,000.00	\$ 5,728.91	\$	2,573.21	\$	8,302.12	\$ 13,452.08
Total			\$22,000.00	 \$5,728.91		\$2,573.21		\$8,302.12	\$13,452.08

2021 Phyto Funding \$22,000

Check Payment to: AECOM Technical Services, Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674 ACH Payment to: AECOM Technical Services, Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039 Wire Transfer Payment to: AECOM Technical Services, Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-905-2100 Fax:978-905-2101

Federal Tax ID No. 95-2661922

ATTN: MURPHY THOMAS
UNITIL SERVICES CORPORATO
6 LIBERTY LANE W
HAMPTON, NH 03842

HAMPTON, NH 03842 United States Invoice Date: 03-AUG-21 Invoice Number: 2000523418 Agreement Number: 60536962-2

Agreement Description:

Payment Term: 60 DAYS

Please reference Invoice Number and Project Number with Remittance

7.00

Project Number

: 60536962

Bill Through Date: 19-SEP-20 - 30-JUL-21

Project Name: 2017 Consulting Support

Roche ster

Task Number: 300

Task Name: Field Support

Labor Bill Rate					
Employee Name/Title	Title/Expenditure	<u>Date</u>	<u>Hours</u>	Bill Rate	Billed Amt
Callahan, Colin P	P13	16-JUL-21	2.00	105.00	210.00
Callahan, Colin P	P13	23-JUL-21	3.00	105.00	315.00
Callahan, Colin P	P13	30-JUL-21	2.00	105.00	210.00

Total Labor Bill Rate

Task Total : Field Support

735.00

735.00

Task Number: 980

Task Name : Field Rate

Labor Bill Rate					
Employee Name/Title	<u>Title/Expenditure</u>	<u>Date</u>	<u>Hours</u>	Bill Rate	Billed Amt
McCabe, Mark M	P20	09-JUL-21	1.00	190.00	190.00
McCabe, Mark M	P20	16-JUL-21	1.00	190.00	190.00
McCabe, Mark M	P20	23-JUL-21	1.00	190.00	190.00
Total Labor Bill	Dete		3.00		570.00
Total Labor Bill	Rate		3.00		370.00

Task Total : Field Rate

570.00

1,305.00

Project Total : 2017 Consulting Support 1,305.00

Total Invoice Amount:

Billing Total:

ACCOUNTS PAYABLE

169,030.02

Billing Summaries <u>Limit</u> Remain **Prior Billing Summary Current** <u>Total</u> 169,030.02 169,171.43 Billings 1,305.00 167,725.02 141.41 0.00 0.00 0.00 Tax

167,725.02

1,305.00

PO 76538

30.40.00.00.182.29 00 Page 23 of 92

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674 ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS
UNITIL SERVICES CORPORATON

6 LIBERTY LANE W HAMPTON, NH 03842 United States Invoice Date: 06-AUG-21 Invoice Number: 2000525319

Payment Term: 30 DAYS

Agreement Description: TAR 01/12/21

Please reference Invoice Number and Project Number with Remittance

Project Number : 60139732 Project Name : 13046002 Rochester GWP Bill Through Date : 03-JUL-21 - 30-JUL-21

Agreement Description: 1/16/17 TAR

Task Number: 2100 Task Name: M. McCabe-Field Rate

Labor Bill Rate Employee Name/Title

 Employee Name/Title
 Title/Expenditure
 Date
 Hours
 Bill Rate
 Billed Amt

 McCabe, Mark M
 P20
 09-JUL-21
 5.00
 215.00
 1,075.00

Total Labor Bill Rate 5.00 1,075.00

Task Total : M. McCabe-Field Rate 1,075.00

Task Number: 2600 Task Name: 2020 Field Invest

Labor Bill Rate

Employee Name/Title	Title/Expenditure	Date	Hours	Bill Rate	Billed Amt
Callahan, Colin P	P13	09-JUL-21	2.00	115.00	
Callahan, Colin P	P13	16-JUL-21			230.00
Callahan, Colin P	P13		1.00	115.00	115.00
Callahan, Colin P	P13	23-JUL-21	1.00	115.00	115.00
Howe, Charles S		30-JUL-21	1.00	115.00	115.00
,	P16	09-JUL-21	2.00	135.00	270.00
Howe, Charles S	P16	16-JUL-21	1.00	135.00	135.00
McCarthy, Ryan S	P16	09-JUL-21	0.50	170.00	85.00
McCarthy, Ryan S	P16	16-JUL-21	0.50	170.00	
McCarthy, Ryan S	P16	30-JUL-21	0.50		85.00
•	· · · ·	30-30L-21	0.50	170.00	85.00
Total Labor Bill R	ato				
. Otal Labor Bill N	are		9.50		1.235.00

Task Total : 2020 Field Invest 9.50 1,235.00

Task Number: 2700 Task Name: 2020 Report

Labor Bill Rate

 Employee Name/Title Barry, Kevin P
 Title/Expenditure P15
 Date 09-JUL-21
 Hours 1.00
 Bill Rate 125.00
 Bill Rate 125.00
 Bill Rate 125.00

 Total Labor Bill Rate
 1.00
 1.00
 125.00

Project Total : 13046002 Rochester GWP 2,435.00

Invoice Summaries

: 2020 Report

Total Current Amount :

Task Total

Page 24 of 92 435.00

125.00

Invoice Summaries
Retention Amount :
Pre-Tax Amount :
Tax Amount :

0.00 2,435.00 0.00

Total Invoice Amount:

2,435.00

Billing Summaries					
Billing Summary Billings Tax	<u>Current</u> 2,435.00 0.00	<u>Prior</u> 555,985.53 0.00	<u>Total</u> 558,420.53 0.00	<u>Limit</u> 587,033.69	Remain 28,613.16
Billing Total:	2,435.00	555,985.53	558,420.53		

AECOM 250 Apollo Drive Chelmsford, MA 01824 aecom.com

August 4, 2021

Our Reference

AECOM Ref. No: 60139732-Inv. 85

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities related to Groundwater Permit GWP-198712002-R-006 Petrolane/Northern Utilities, Inc. Site (DES #198712002, Project #432) AECOM Project # 60139732 Period Ending July 30, 2021

Dear Mr. Murphy:

Enclosed for your information is the invoice and Progress Report for professional environmental consulting services related to groundwater monitoring as specified in the groundwater permit (GWP) for the site (GWP-198712002-R-006) issued by the New Hampshire Department of Environmental Services (NHDES).

Project Budget Information

This invoice is for \$2,435.00. The total authorized budget for 2020/21 is \$279,360. The proposals for 2020/21 GWP activities included the following: performing one round of groundwater monitoring each year as specified in the GWP for the site and preparing an annual groundwater monitoring report consistent with those that have been submitted in the past (Comprehensive Groundwater Quality Summary Reports are to be submitted every two years [January 2022]). AECOM has prepared a work plan for a source investigation in response to a meeting with Unitil, AECOM, and Amy Doherty at NHDES on February 5, 2020, as well as a waste management plan in response to a Unitil request to consult on environmental issues related to the upgrade of utility infrastructure at the Site. Add-ons to the original proposal included tasks for on-call consulting, scope of work/work plan development, the field investigation, pipeline construction support/consulting, associated reporting for the above referenced investigation, health and safety plan updates, waste profile field sampling and analysis, supplemental field sampling and analysis, and utility construction oversight and reporting.

This project was proposed on a time and materials basis to be billed on a monthly basis.

Task 2100 2021 Strategic On-Call Consulting

This task has been established for Mr. Mark McCabe to support the project in a strategic senior consulting capacity, and during this reporting period captures agency follow-up related to the source investigation and development of the site investigation report. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$1,075.00. Although this task is slightly exceeded, the project as a whole is on budget.

Task 2600 2021 Field Investigation

During this invoicing period AECOM provided oversight support to the HDD installation. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$1,235.00.

Task 2700

2021 Report

During this invoicing period AECOM performed follow-up activities for the previously submitted Site Investigation report. As detailed in Table 1 and the attached invoice, costs incurred during this invoicing period associated with this task were \$125.00.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional services in the future.

Sincerely yours, AECOM

Ryan McCarthy Project Manager

AEĆOM

Attachment

E: ryan.mccarthy@aecom.com

Colin Callahan

Assistant Project Manager

AECOM

E: colin.callahan@aecom.com

Table 1 Invoice Summary Rochester Groundwater Permit GWP-198712002-R-006 Activities July 2021 Billing Period

	Task	Authorized Budget	Previously Invoiced	Current Invoice	Total Invoiced	Remaining Budget
2100	On-Call Consulting	\$44,500.00	\$44,410.00			
2200	2020 NHDES Modeling Response	\$28,560.00	\$26,737.75	\$0.00	\$26,737.75	1
2300	November 2020 Groundwater Monitoring Event	\$13,900.00	\$12,405.15	\$0.00	\$12,405.15	\$1,494.85
2400	November 2020 Reporting Event	\$5,800.00	\$5,636.25	\$0.00	\$5,636.25	\$163.75
2500	Work Plan Preparation	\$16,700.00	\$16,633.75	\$0.00	\$16,633.75	\$66.25
2600	Field Investigation	\$82,900.00	\$74,292.83	\$1,235.00	\$75,527.83	\$7,372.17
2700	Reporting	\$30,200.00	\$29,458.75	\$125.00	\$29,583.75	\$616.25
2800	HASP Updates	\$2,100.00	\$2,067.50	\$0.00	\$2,067.50	\$32.50
2900	Field Sampling and Analysis	\$13,800.00	\$12,468.10	\$0.00	\$12,468.10	\$1,331.90
3100	Utility Construction Oversight and Reporting	\$16,800.00	\$16,534.76	\$0.00	\$16,534.76	\$265.24
3200	November 2021 Groundwater Monitoring Event	\$14,000.00	\$0.00	\$0.00	\$0.00	\$14,000.00
3300	November 2021 Reporting Event	\$10,100.00	\$0.00	\$0.00	\$0.00	\$10,100.00
Total	NP \$19 700	\$279,360.00	\$240,644.84	\$2,435.00	\$243,079.84	\$28,379.60

2020 GWP \$19,700 2020 Site Investigation/ Utility Upgrade \$154,100 2020 Supplemental Investigation - \$44,000 2021 GWP \$33,000

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-905-2100 Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON **6 LIBERTY LANE W**

HAMPTON, NH 03842 **United States**

Invoice Date: 03-SEP-21 Invoice Number: 2000535749

Agreement Number: EM13046004

greement Description: Conversion - 177741

Payment Term: 30 DAYS ment Description: TAR 01/12/21

Please reference Invoice Number and Project Number with Remittance

Project Number : 60139734

Bill Through Date: 17-JUL-21 - 27-AUG-21

Project Name : UNITIL PHYTOREMEDIATION PROGRAM

Task Number: 1400

Task Name: 2021 Phyto

Labor Bill Rate					
Employee Name/Title	Title/Expenditure	<u>Date</u>	<u>Hours</u>	Bill Rate	Billed Amt
Callahan, Colin P	P13	23-JUL-21	1.00	125.00	125.00
Callahan, Colin P	P13	30-JUL-21	1.00	125.00	125.00
Callahan, Colin P	P13	13-AUG-21	1.00	125.00	125.00
Callahan, Colin P	P13	20-AUG-21	2.00	125.00	250.00
· · · · · · · · · · · · · · · · · · ·	P16	30-JUL-21	1.00	135.00	135.00
Howe, Charles S	P07	30-JUL-21	8.00	55.00	440.00
Hunt, Audrey Clarke	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30-JUL-21	0.50	170.00	85.00
McCarthy, Ryan S		30-30E-21	0.50	170.00	85.00
McCarthy, Ryan S	P16	20-AUG-21			
McKenna, James Walter (Walter)	P08	30-JUL-21	8.00	65.00	520.00

Total Labor Bill Rate

23.00 1,890.00

Reimburgable

Expenditure Type Field Supplies Mileage Mileage	Employee/Vendor Name Hunt, Audrey Clarke Hunt, Audrey Clarke McKenna, James Walter (Walter)	<u>Date</u> 28-JUL-21 28-JUL-21 28-JUL-21	Inv Number EXP7926604 EXP7882453 EXP7919147	Raw Cost 40.39 84.00 84.00	Multiplier 1.0800 1.0800 1.0800	Billed Amt 43.62 90.72 90.72
Total Bais	wh.umahla			208.39		225.06

Total Reimbursable

208.39 2,115.06 Task Total : 2021 Phyto

2,115.06 Project Total: UNITIL PHYTOREMEDIATION PROGRAM

Invoice Summaries

Total Current Amount: Retention Amount: Pre-Tax Amount: Tax Amount:

2,115.06 0.00 2.115.06 0.00

2,115.06

Total Invoice Amount:

Billing Summaries Total <u>Limit</u> <u>Remain</u> Prior <u>Current</u> Billing Summary 360.078.59 16,041.13 344,037.46 2,115.06 341,922,40

0.00

Billing Total:

Billinas

Tax

2,115.06 341,922.40

0.00

344,037.46

0.00

74538 30.40.00.00.182.29.00

AECOM 250 Apollo Drive Chelmsford, MA 01824 secom.com

September 03, 2021

AECOM Reference 60139734-Inv. 110

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2021 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending August 27, 2021

Dear Mr. Murphy,

E¹ losed for your information is an invoice and Progress Report for professional environmental c sulting services related to the 2021 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Project Budget Information

This invoice is for \$2,115.06. The total authorized budget for this project for the 2021 calendar year is \$22,000. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2021 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1400

2021 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to Site inspections in July and August. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$2,115.06.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Ryan McCarthy, MS Project Manager

AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

Table 1 Invoice Summary 2021 Phytoremediation Program July-August 2021 Billing Period

	Task	Authorized Budget	Previously invoiced	Current Invoice	Total Invoiced	Remaining Budget
1400	Continued Groundwater Suppression Installation Activities 2021	\$ 22,000.00				
Total		\$22,000.00	\$8,302.12	\$2,115.06	\$10,417.18	\$11,337.02

2021 Phyto Funding \$22,000

Check Payment to: AECOM Technical Services, Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Technical Services, Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Technical Services, Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 95-2661922

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON 6 LIBERTY LANE W

HAMPTON, NH 03842 **United States**

Invoice Date: 12-NOV-21 Invoice Number: 2000559945

Agreement Number: 60536962-2

Agreement Description:

Payment Term: 60 DAYS

Please reference Invoice Number and Project Number with Remittance

168.00

4.00

Project Number : 60536962

Bill Through Date: 25-SEP-21 - 29-OCT-21

Project Name : 2017 Consulting Support

Task Number: 300 Task Name: Field Support

Reimbursable

Expenditure Type Employee/Vendor Name <u>Date</u> **Inv Number** Raw Cost Multiplier **Billed Amt** Mileage 08-SEP-21 Callahan, Colin P EXP7999326 56.00 1.0500 58.80 Mileage Callahan, Colin P 13-SEP-21 EXP7999326 56 00 1.0500 58.80 Mileage Callahan, Colin P 15-SEP-21 EXP7999326 56.00 1.0500 58.80

Total Reimbursable

Task Total : Field Support 176.40

176.40

860.00

Task Number: 410 Task Name: Field Sampling

Labor Bill Rate

Employee Name/Title Title/Expenditure **Date Bill Rate** <u>Hours</u> **Billed Amt** McCabe, Mark M P20 01-OCT-21 4.00 215.00 860.00 **Total Labor Bill Rate**

SubConsultant

Expenditure Type Employee/Vendor Name Date Inv Number Raw Cost **Billed Amt Multiplier** Professional Services GEOSEARCH INC 15-SEP-21 21PV9483 1.0800 5.274.00 5 695 92 Professional Services TPI ENVIRONMENTAL INC 27-SEP-21 10015 1,400.00 1.0800 1,512.00 **Professional Services EUROFINS SPECTRUM** 30-SEP-21 6200001159 580.00 1.0800 626.40 ANALYTICAL INC

Total SubConsultant

7,254.00 7,834.32

153.00

Reimbursable Expenditure Type Employee/Vendor Name **Date** Inv Number Multiplier **Raw Cost Billed Amt Outside Contractors** PALMS ENVIRONMENTAL LLC 21-SEP-21 38519 153.00 1.0800 165.24

Total Reimbursable Task Total : Field Sampling

8,859,56

Project Total: 2017 Consulting Support 9,035.96 Accounts Payable

Invoice Summaries

Total Current Amount: Retention Amount:

Pre-Tax Amount:

1**202 0 &** AON

9,035.96

165.24

0.00 9.035.96

Invoice Summaries Tax Amount :					
Tax Amount .					0.00
Total Invoice Amount :					9,035.96
D:111:					C
Billing Summaries					
Billing Summary	<u>Current</u>	<u>Prior</u>	<u>Total</u>	<u>Limit</u>	Remain
Billings	9,035.96	176,203.15	185,239.11	185,299.43	60.32
Tax	0.00	0.00	0.00	155,255.75	00.32
Billing Total :	9,035.96	176,203.15	185,239.11		
Outstanding Invoices					
Invoice Number			Invoice Date		Immaias Batanas
2000547574			01-OCT-21		Invoice Balance
2000559945					5,324.38
			12-NOV-21		9,035.96
Outstanding Total:					14,360,34
•					14,360.34

PO 76538 30. 40.00.00.182.29.00

Check Payment to: AECOM Inc. An AECOM Company 1178 Payaphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-905-2100 Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON **6 LIBERTY LANE W** HAMPTON, NH 03842 **United States**

Invoice Date: 03-DEC-21 Invoice Number: 2000567400

Agreement Description: TAR 01/12/21

Payment Term: 30 DAYS

DEC 1 6 2021 Accounts Payable

Please reference invoice Number and Project Number with Remittance

Project Number : 60139734

Billings

Bill Through Date : 02-OCT-21 - 26-NOV-21

Project Name: UNITIL PHYTOREMEDIATION PROGRAM

Mathaman	-						
Caliabran, Colin P	Task Number : 1400		Task Name : 20	021 Phyto			
Callahan, Colin P	Labor Bill R	Late					
Callahan, Colin P P13	Employee Name/Title	Title/Expenditure		Data	Harry	5W 5.4-	
Calalahan, Colin P			,	DR OCT 24			Billed Amt
Callathan, Colin P P13	Callahan, Colin P	P13					125.00
Callahan, Colin P P13 29-OCT-21 2.00 125.00 Callahan, Colin P P13 3 29-OCT-21 5.00 125.00 Callahan, Colin P P13 125.00 125.00 125.00 Callahan, Colin P P13 124.NOV-21 5.00 125.00 125.00 Callahan, Colin P P13 124.NOV-21 2.00 125.00 Callahan, Colin P P13 124.NOV-21 2.00 125.00 Callahan, Colin P P13 124.NOV-21 2.00 125.00 Callahan, Colin P P13 125.00 Callahan, Colin P13 12		P13					125.00
Callahan, Colin P P13 OS-NOV-21 2.00 125.00 Callahan, Colin P P13 P13 P14-NOV-21 2.00 125.00 Callahan, Colin P P13 P13 P15-00 Callahan, Colin P P13 P15-00 Callahan, Colin P P13 P15-00 Callahan, Colin P P13 P15-00 P15-0	Callahan, Colin P						250.00
Calishan, Colin P	Callehan, Colin P	P13					250.00
Callahan, Colin P P13 18-NOV-21 2.00 125.00 Callahan, Colin P P13 18-NOV-21 2.00 125.00 125.00 Callahan, Colin P P13 26-NOV-21 2.00 125.00 125.00 Howe, Charles S P16 26-NOV-21 3.50 135.00 How, Charles S P16 26-NOV-21 10.50 55.00 McCarthy, Ryan S P16 08-OCT-21 0.50 170.00 McCarthy, Ryan S P16 08-OCT-21 0.50 170.00 McCarthy, Ryan S P16 12-NOV-21 0.50 170.00 McCarthy, R		P13					625.00
Callahan, Colin P P13	Callahan, Colin P						250.00
Howe, Charles S P16 204-NOV-21 3.50 135.00 Hunt, Audrey Clarke P07 264-NOV-21 1.50 55.00 McCarthy, Ryan S P16 08-OCT-21 0.50 170.00 McCarthy, Ryan S P16 08-NOV-21 1.00 170.00 McCarthy, Ryan S P16 12-NOV-21 0.50 170.00 McCarthy, Ryan S P16 170.00 McCart	Callahan, Colin P						250.00
Hunt, Audrey Clarke P07 McCarthy, Ryan S P16 McCarthy, Ryan S P1	Howe, Charles S						250.00
McCarthy, Ryan S	Hunt, Audrey Clarke						472.50
McCarthy, Ryan S	McCarthy, Ryan S						577.50
McCarthy, Ryan S P16 12-NOV-21 0.50 170.00 McCarthy, Ryan S P16 12-NOV-21 0.50 170.00 McCarthy, Ryan S P16 12-NOV-21 0.50 170.00 McCarthy, Ryan S P16 28-NOV-21 0.50 170.00 33.5	McCarthy, Ryan S	· ·-					85.00
McCarthy, Ryan S Total Labor Bill Rate Reimbursable Expenditure Type Misage	McCarthy, Rvan S						170.00
Total Labor Bill Rate Reimbursable Employee/Vendor Name Milaage Milaage Milacellaneous - Allowable Hunt, Audrey Clarke Total Reimbursable Total Reimbursable Task Total : 2021 Phyto Invoice Summaries Cotal Current Amount : Pre-Tax Amount : Pax Amount : Otal Invoice A							85.00
Reimbursable Expenditure Type Employee/Vendor Name Mileage Munt, Audrey Clarke Jo-SEP-21 EXP8042256 78.40 1.0800 Total Reimbursable Task Total : 2021 Phyto Invoice Summaries Cotal Current Amount: re-Tax Amount: ax Amount: ax Amount: ax Amount: ax Amount: cotal Invoice Amount: Date Invoice Amount: 3.70 3.71 3.72 3.74 3.75 3.74 3.75 3.75 3.76 3.77 3.77 3.77 3.77 3.77 3.77 3.77	• • • • • • • • • • • • • • • • • • • •	, , <u>-</u>		26-NOV-21	0.50	170.00	85.00
Invoice Summaries Invoice Summaries Invoice Amount: In	Total Labor Bill Rate				33.50	_	3,600.00
Miscellaneous - Allowable Hunt, Audrey Clarke 30-SEP-21 EXP8042256 78.40 1.0800 1.0800 Total Reimbursable 98.39 Task Total : 2021 Phyto 3,7 Project Total : UNITIL PHYTOREMEDIATION PROGRAM 3,7 Invoice Summaries Cotal Current Amount : Research of the Amount : Research		le					
Miscellaneous - Allowable Hunt, Audrey Clarke 30-SEP-21 EXP8042286 78.40 1.0800 Total Reimbursable 98.39 Task Total : 2021 Phyto Invoice Summaries Cotal Current Amount : Invoice Amount : In		Employee/Vendor Name	Date	lav Mumbee	Bow Cook	64	
Total Reimbursable Total Reimbursable Task Total : 2021 Phyto Project Total : UNITIL PHYTOREMEDIATION PROGRAM Invoice Summaries Total Current Amount : Retention Amount : Pre-Tax Amount : ax Amount : Total Invoice		Hunt, Audrey Clarke					Billed Amt
Total Reimbursable 98.39 Task Total : 2021 Phyto Project Total : UNITIL PHYTOREMEDIATION PROGRAM Invoice Summaries otal Current Amount : letention Amount : letention Amount : lex Amount : lex Amount : lex Amount : otal Invoice Amount : 1.000 3.70 3.	Miscellaneous - Allowable	Hunt, Audrey Clarke					84.67
Task Total: 2021 Phyto Project Total: UNITIL PHYTOREMEDIATION PROGRAM Invoice Summaries Invoice Summaries Invoice Amount: Inter-Tax Amount: Invoice Amount	-4-15	••		474 0042200	10.80	1.0800	21.59
Invoice Summaries Invoice Summaries Interest Amount: Interest Amount: Invoice Summaries Invoice Summari	i otal Kelmb	ursable			98.39	-	106.26
Invoice Summaries Cotal Current Amount: Retention Amount: Fire-Tax Amount: Fiax Am	Task Total : 2021 P	hyto					3,706,26
Invoice Summaries Total Current Amount: Retention Amount: Pre-Tax Amount: ax Amount: Total Invoice Amount: Total Invoice Amount: 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,							
Total Current Amount : Retention Amount : Pre-Tax Amount : Fax Amount : Fotal Invoice Amount : 7	Project Total: UNITIL PH	/TOREMEDIATION PROGRAM					3,706.26
3.7 Pre-Tax Amount : Pre-Tax Amount : 3.7 (ax Amount : 7.2 (ax Amount : 7.		maries					
Pre-Tax Amount: Fax Amount: Fotal Invoice Amount: 70 30.40.00.00.182.29.00							3.706.26
Tax Amount: PO 7536 30.40,00.00.182.29.00							0.00
otal Invoice Amount: PO 76530 30.40,00.00.182.29.00							3,706.28
10 10 00 30.40,00.00.182.29.00		200-					0.00
10 10 00 30.40,00.00.182.29.00	fotal Invoice Amount	111 11698	`				
Balling Supposition 100 00 00 00 00 00 00 00 00 00 00 00 00		(1/1/10)) 30 40 A	n nn 182 -	29 00	-	3,706.26
	Billing Suma	naries	/ JU. 501.0	0.00.108.	1.00		
illing Summary Current Date	illing Symmary	Current	<u>Prior</u>	Total	1 4	mit	Remain

0.00

346,227,46

3,706.26

0.00

<u>Total</u> 349,933.72

0.00

360,078.59

Remain 10,144.87

Billing Summaries Billing Summary	Current	Prior	Total	Limit	Remain
Billing Total :	3,706.26	346,227.46	349,933.72		
Outstanding Invoices			Invoice Date	-	Invoice Balance
000567400 000549490			03-DEC-21 15-OCT-21		3,706.26 2,190.00
Outstanding Total:					5,896.26

AECOM 250 Apollo Drive Chelmsford, MA 01824 aecom.com

December 1, 2021
AECOM Reference
60139734-Inv. 112

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2021 Phytoremediation Program
Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432)
32 Gonic Road, Rochester, NH
Period Ending November 26, 2021

Dear Mr. Murphy,

Enclosed for your Information is an invoice and Progress Report for professional environmental consulting services related to the 2021 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Project Budget Information

This invoice is for \$3,706.26. The total authorized budget for this project for the 2021 calendar year is \$22,000. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2021 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1400

2021 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to an irrigation event and Site inspection in November. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$3,706.26.

If you have any questions regarding this invoice, please do not healtate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely.

Ryan McCarthy, MS Project Manager

AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

Table 1 Invoice Summary 2021 Phytoremediation Program October-November 2021 Billing Period

	Task	Authorized Budget	Previously Invoiced	Current Invoice	Total Involced	Remaining Budget
	Continued Groundwater Suppression Installation Activities			*		
1400	2021	\$ 22,000.00	\$ 12,607.18	\$ 3,706.26	\$ 16,313.44	\$ 5,440.76
Total		\$22,000.00	\$12,607.18	\$3,706.26	\$16,313.44	\$5,440.76

2021 Phyto Funding \$22,000

ABA Number 071000039

RECEIVED JAY18

Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-906-2100 Fax:978-905-2101

Federal Tax ID No. 06-0852759

Billing Total :

ATTN: MURPHY THOMAS
UNITIL SERVICES CORPORATION 6 LIBERTY LANE W HAMPTON, NH 03842 United States

Invoice Date: 10-JAN-22 Invoice Number: 2000580518

ement Number: EM13046004 int Description: Conversion - 177741

352,063.23

Payment Term: 30 DAYS ement Description: TAR 01/12/21 Please reference Invoice Number and Project Number with Remittance

Project Number : 60139734 Bill Through Date : 27-NOV-21 - 24-DEC-21 Project Name: UNITIL PHYTOREMEDIATION PROGRAM Task Number: 1400 Task Name: 2021 Phyto Labor Bill Rate 2.00 2.00 2.00 1.00 Title/Expenditure 125.00 Billed Amt 250.00 Emoloyee Name/Title Date 03-DEC-21 Callahan, Colin P Callahan, Colin P P13 10-DEC-21 17-DEC-21 125.00 125.00 250.00 250.00 P13 Callahan, Colin P Callahan, Colin P P13 P13 24-DEC-21 125.00 8.00 P16 P16 Howe, Charles S 10-DEC-21 135.00 1,080.00 85.00 24-DEC-21 170,00 McCarthy, Ryan S 16.50 2,040.00 Total Labor Bill Rate Raw Cost 82.88 Employee/Vendor Name Hunt, Audrey Clarke inv Mumber EXP8122840 Multiplier 1.0800 Date 23-NOV-21 **Total Reimbursable** 82.88 89,51 2,129.51 Task Total : 2021 Phyto Project Total: UNITIL PHYTOREMEDIATION PROGRAM 2,129.51 Invoice Summaries
Total Current Amount: 2,129.51 0.00 Retention Amount : Pre-Tax Amount : 2,129.51 165 3040.00.00.187.79.00 -2,129.51 Billing Summarles Billings
Billings Limit 360,078.59 Remain **Current** 2,129.51 352,063.23 0.00 349,933.72 8,015.36 0.00 0.00

349,933.72

2,129.51

1/31/22 Email Refor

January 3, 2022

AECOM Reference
60139734-inv. 113

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2021 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending December 24, 2021

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2021 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

RECEIVED JAN 18 ...

in place in the second of

This invoice is for \$2,129.51. The total authorized budget for this project for the 2021 calendar year is \$22,000. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2021 growing seasons (April – October). AECOM will also perform Site inspections on a bi-morthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Villak Penulmed

The following section briefly describes work and charges for this invoicing period for each task:

海は 84位の - 1111 Compani - Group Sea a Communication Appendion Appendion

During this invoicing period, costs incurred were related to a Site inspection and cleanup performed in December. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$2,129.51.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Ryan McCarthy, MS Project Manager AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan Environmental Scientist AECOM

E: colin.callahan@aecom.com

ecember 2021 Billing Period

Task		Authorized Budget	Previously Involced	Current Invoice	Total Invoiced	Remainin Budget
1400	Continued Groundwater Suppression Installation Activities 2021		\$ 16,313.44	\$ 2,129.51	\$ 18,442.95	\$ 3,311.
Tota		\$22,000.00	\$16,313.44	\$2,129.51	\$18,442.95	\$3,311

)21 Phylo Funding \$22,000

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

RECEIVED

FEB 17 2022

250 Apollo Drive, Chelmsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MAGGONIALS Payable

UNITIL SERVICES CORPORATON **6 LIBERTY LANE W**

HAMPTON, NH 03842 United States

Invoice Date: 03-FEB-22 Invoice Number: 2000588365

Agreement Description: IAIN

Payment Term: 30 DAYS

Payment Term: 30 DAYS

Payment Term: 30 DAYS

Payment Term: 30 DAYS

Hours

2.00

4.00

4.00

2.00

0.50

12.50

Bill Rate

125.00

125.00

125.00

125.00

170.00

Project Number : 60139734

Bill Through Date: 25-DEC-21 - 28-JAN-22

Date

31-DEC-21

14-JAN-22

21-JAN-22

28-JAN-22

21-JAN-22

Task Number: 1400 Task Name: 2021 Phyto

Labor Bill Rate

Employee Name/Title Title/Expenditure Callahan, Colin P P13 Callahan, Colin P P13 Callahan, Colin P P13 Callahan, Colin P P13 McCarthy, Ryan S P16

Total Labor Bill Rate

Total Reimbursable

: 2021 Phyto

Reimbursable

Expenditure Type Repairs & Maintenance

Task Total

Employee/Vendor Name Cleary, Maryanne V

Date 06-DEC-21

iny Number EXP8155985

Raw Cost **Multiplier** 189.00 1.0800

Billed Amt 204.12

Billed Amt

250.00

500.00

500.00

250.00

85.00

1,585.00

189.00

1,789.12

204.12

Project Total: UNITIL PHYTOREMEDIATION PROGRAM

1.789.12

Invoice Summaries

Total Current Amount: Retention Amount: Pre-Tax Amount:

Total Invoice Amount:

Tax Amount:

18/165 30.40.00.00.182.29.00

0.00 1,789.12 0.00

1.789.12

1,789,12

Billing Summaries

Billing Summary Billings Tax

1,789,12 0.00

Current

Prior 352,063.23 0.00

<u>Total</u> 353,852.35 0.00

Limit 382,678.59

Remain 28,826,24

Billing Total:

1,789.12

352,063.23

353,852,35

Outstanding Invoices

Invoice Number 2000580518 2000588365

Invoice Date 10-JAN-22 03-FEB-22

Invoice Balance 2,129.51 1,789.12

Outstanding Total:

3.918.63

AECOM Expense Report EXP8155985

1 1 2 12.55 6

Employee Name Expense Date Range Cleary, Maryanne V 06-DEC-21 - 06-DEC-21

Cost Center

5803

Approver Report Submit Date McCarthy, Ryan S 19-JAN-2022

Report Currency

USD

Project Task

60139734 1400

Draft Number

114

ACM Signature

certify the claimed business expenses contained herein are bona fide and proper business expenses incurred on behalf of AECOM, and is in accordance with AECOM travel & expense policies.

Supplier Expenses

Date	Expense Type	Receipt Amount	Receipt Currency	Reimbursable Amount	Merchant	Justification	Expenditure Organization
06-DEC-2021	Repairs & Maintenance	189.00	USD	189.00	A-D ARCHAMBAULT PLUMBING	winterizing	41,ACM.US_ME.7965
				400 00			

Total: 189.00

Cleary, Maryanne

From: Sent: ClearentGateway@clearent.com Monday, December 6, 2021 11:28 AM

To:

Cleary, Maryanne

Subject:

[EXTERNAL] Your receipt from A-D Archambault Plumbing & Heating Inc

Here is your receipt from A-D Archambault Plumbing & Heating Inc.

A-D Archambault Plumbing & Heating Inc

603-335-1800

Terminal: A-D Archambault Plumbing & Heating Inc

Transaction ID: 196932636

Transaction Date: 12/06/2021 04:28 PM (UTC)

Transaction Type: SALE, APPROVED Card Number: **** **** 6902

Card Type: VISA

AUTH: 006099

Entry Mode: Manual Entry

MID: ******5954

TID: 55275823

Invoice: 2023

Order ID: 196932636 Comments: 60139734,1400

Amount: 189.00 USD Total: 189.00 USD

AECOM 250 Apollo Drive Chelmsford, MA 01824 secom.com

February 2, 2022

AECOM Reference 60139734-Inv. 114

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2021 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending January 28, 2021

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2021 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Troject Budget Information

This invoice is for \$1,789.12. The total authorized budget for this project for the 2021 calendar year is \$22,000. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2021 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1400 2021 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to subcontracted backflow preventor winterizing and generation of the Phytoremediation Memo included as an attachment to the Annual Report. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$1,789.12.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely.

Ryan McCarthy, MS Project Manager

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

AECOM

Table 1 Invoice Summary 2021 Phytoremediation Program Dec 2021/ Jan 2022 Billing Period

Task		Authorized Budget	Previously invoiced	Current Invoice	Total Invoiced	Remaining Budget
1400	Continued Groundwater Suppression Installation Activities 2021	\$ 22,000.00	\$ 18,447,95	\$ 1,789.12	£ 20.227.07	
Total		\$22,000.00	\$18,447.95	Ţ :,, 00:12		1,0110

2021 Phyto Funding \$22,000

Check Payment to: **AECOM Inc.** An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 Account Number 5800937020 ABA Number 026009593 SWIFT CODE BOFAUS3N

RECEIVED MAR 22 12077

250 Apollo Drive, Cheimsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON 6 LIBERTY LANE W HAMPTON, NH 03842 United States

Invoice Date: 18-MAR-22 Invoice Number: 2000604281

Agreement Number: Agreement Description: TAR 01/12/21

Payment Term: 30 DAYS

Accounts Payes

Please reference Invoice Number and Project

Project Number : 60139734

Bill Through Date: 29-JAN-22 - 14-MAR-22

Project Name: UNITIL PHYTOREMEDIATION PROGRAM

Task Number: 1400

Task Name: 2021 Phyto

Labor Bill Rate

Total Labor Bill Rate

Employee Name/Title Callahan, Colin P Callahan, Colin P McCarthy, Ryan S

Title/Expenditure P13 P13 P16

Date 04-FEB-22 11-FEB-22 04-FEB-22

Bill Rate Hours 2.00 125.00 3.00 125.00 0.50 170.00

5.50

Hours

1.00

2.00

2.00

2.00

16.50

Billed Amt 250.00 375.00 85.00

710.00

Task Total : 2021 Phyto

710.00

125.00

250.00

250.00

250.00

Task Number: 1500

Task Name: 2022 GW Supp Install

Labor Bill Rate

Callanani, Colin P
Callahan, Colin P
Callahan, Colin P
Howe, Charles S
McCarthy, Ryan S
McCarthy, Ryan S
Meyler, Mary E (Mary)
White, Taylor Patrick (Taylor)

Employee Name/Title

Callahan, Colin P

P15 Junior Technician

P16

Title/Expenditure

P13

P13

P13

P13

P16

P16

04-MAR-22 25-FEB-22 25_FFR_22 11-MAR-22 25-FEB-22 25-FEB-22

Date 11-FEB-22

18-FEB-22

25-FEB-22

3.50 135.00 0.50 170.00 1.00 170.00 0.50 125.00 4.00 83.00

125.00

125.00

125.00

125.00

472.50 85.00 170.00 62.50 332.00

1.997.00

: 2022 GW Supp Install

1,997.00

Project Total: UNITIL PHYTOREMEDIATION PROGRAM

2.707.00

Invoice Summaries

Total Labor Bill Rate

Total Current Amount: Retention Amount:

Pre-Tax Amount: Tax Amount:

Total Invoice Amount:

8/65 30.40.00.00.182.29.00

2,707.00 0.00 2,707.00

2.707.00

0.00

Billing Summaries

Billing Summary Billings

Current 2 707 00 <u>Prior</u> 353,852.35

356,559.35

382,678.59

Remain 26,119,24

Billing Summaries Billing Summary Tax Billing Total:	Current 0.00 2,707.00	Prior 0.00 353,852.35	Total 0.00 356,559.35	Limit	Remain
Outstanding Invoices Invoice Number 2000588365			Invoice Date 03-FEB-22	it	nvoice Balance 1,789.12
Outstanding Total:				•	1,789.12

Table 1 Invoice Summary 2022 Phytoremediation Program February 2022 Billing Period

Task		Authorized Budget	Previously Invoiced	Current Invoice	Total Invoiced	Remaining Budget
1400	Continued Groundwater Suppression Installation Activities 2021	\$ 22,000.00	\$ 20,237.07	\$ 710.00	\$ 20,947.07	\$ 807.13
1500	Continued Groundwater Suppression Installation Activities 2022	\$ 22,600.00	\$ -	\$ 1,9 9 7.00	\$ 1,997.00	\$ 20,603.00
Total		\$44,600.00	\$20 ,237.07			\$21,410.13

2021 Phyto Funding \$22,000 2022 Phyto Funding \$22,600

Timecard Period

29-JAN-22 - 04-FEB-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Callahan, Colin P

Employee Number

647972

Draft Number

115

Project Task 60139734 UNITIL ROCHESTER PHYTO

1400 2021 Phylio

Туре Regular Hrs

SAT **29-JAN** 0.00

0.00

30-JAN 31-JAN 0.00

SUN

0.00

01-FEB 0.00

MON

0.00

02-FEB 0.00

WED

0.00

0.00

TUE

0.00

03-FEB 04-FEB 2.00

2.00

THUR

FRI

0.00

0.00 2.00

Total

2.00

Callahan, Colin P

Employee Signature

Total Regular Hours: Total Overtime Hours:

Total Non-Worked Hours:

2.00 0.00

0.00

Approver For Employee Signature

Total:

Tammi, Carl E

Timecard Period

05-FEB-22 - 11-FEB-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Callahan, Colin P

Employee Number

Draft Number

647972 115

Project

Task

60139734 UNITIL ROCHESTER PHYTO

1400 2021 Phyto

Туре Reguler Hrs

SAT 05-FEB

0.00

06-FEB 0.00 0.00

SUN

0.00

07-FEB 0.00

0.00

MON

08-FEB 0.00

TUE

0.00

09-FEB 4.00

WED

4.00

10-FEB 11-FEB 0.00 0.00

> 0.00 4.00

FRI

Total

4.00

Callahan, Colin P

:

Employee Signature

Total Regular Hours: Total Overtime Hours:

Total Non-Worked Hours:

0.00

4.00 0.00 Approver For Employee Signature

Total:

Sison, Jenny Lyn (Jenny)

0.00

THUR

Timecard Period

12-FEB-22 - 18-FEB-22

Organization

41.ACM.US ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Callahan, Colin P

Employee Number

647972

Draft Number

115

Project

Task

60139734 UNITIL ROCHESTER PHYTO

1400 2021 Phyto

Type Regular Hrs 12-FEB 0.00

SAT

0.00

13-FEB 0.00

SUN

0.00

14-FEB 0.00

MON

0.00

15-FEB

TUE

0.00

16-FEB 0.00 2.00

WED

2.00

17-FEB 18-FEB 0.00

0.00

THUR

0.00 2.00

Total

FRI

0.00 2.00

Callahan, Colin P

Employee Signature

Total Regular Hours: Total Overtime Hours:

Total Non-Worked Hours:

2.00

0.00 0.00

Approver For Employee Signature

Total:

Tammi, Carl E

Type

Timecard Period

:

29-JAN-22 - 04-FEB-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

McCarthy, Ryan S

Employee Number

648137

Draft Number

115

Project 60139734 UNITIL ROCHESTER PHYTO Task

1400 2021 Phyto

McCarthy, Ryan S

Employee Signature

Total Regular Hours: Total Overtime Hours:

Total Non-Worked Hours:

0.50 0.00 0.00

Regular Hrs 0.00 0.00 0.00 0.00 0.50 Total: 0.00 0.00 0.00 0.00 0.50

SUN

30-JAN

MON

31-JAN

TUE

01-FEB

WED

02-FEB

SAT

29-JAN

Approver For Employee Signature

Tammi, Carl E

THUR

0.00

0.00

03-FEB

FRI

0.00

0.00

Total

0.50

0.50

04-FEB

Timecard Period

19-FEB-22 - 25-FEB-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Callahan, Colin P

Employee Number

647972

Draft Number

115

Project	Task
•	
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install

		SAT	SUN	MON	TUE	WED	THUR	FRI	
Type Regular Hrs		19-FEB 0.00	20-FEB 0.00	21-FEB 2.00	22-FEB 0.00	23-FEB 0.00	24-FEB 0.00	25-FEB 0.00	Total 2.00
	Total:	0.00	0.00	2.00	0.00	0.00	0.00	0.00	2.00

Callahan, Colin P

Employee Signature

Approver For Employee Signature

Stiller, Michael Approver Signature

Total Regular Hours: Total Overtime Hours: **Total Non-Worked Hours:**

2.00 0.00 0.00

Timecard Period

26-FEB-22 - 04-MAR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Callahan, Colin P

Employee Number

Draft Number

647972 115

Project 60139734 UNITIL ROCHESTER PHYTO Task

1500 2022 GW Supp Install

Type Regular Hrs

26-FEB 0.00

SAT

0.00

27-FEB 0.00

SUN

0.00

0.00

MON

0.00

28-FEB

1.00

TUE

1.00

01-MAR

0.00

WED

0.00

02-MAR

1.00

THUR

03-MAR

0.00 2.00

Total

FRI

04-MAR

0.00 2.00

Callahan, Colin P

Employee Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours:

2.00

0.00 0.00 **Approver For Employee Signature**

Total:

Stiller, Michael

Approver Signature

1.00

Timecard Period : 19-FEB-22 - 25-FEB-22 Organization : 41.ACM.US_ME.7965

Assignment Category : A - Full Time Employee Category : Exempt

Employee Name : Howe, Charles S

Employee Number : 647557
Draft Number : 115

Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs	19-FEB 0.00	20-FEB 0.00	MON 21-FEB 0.00	TUE 22-FEB 0.00	WED 23-FEB 0.00	THUR 24-FEB 3.50	FRI 25-FEB 0.00	Total 3.50	
			Total: 0.00	0.00	0.00	0.00	0.00	3.50	0.00	3.50	

Howe, Charles S

Employee Signature

Approver For Employee Signature

Approver Signature

Total Regular Hours: 3.50
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period : 19-FEB-22 - 25-FEB-22 Organization : 41.ACM.US_ME.7965

Assignment Category : A - Full Time
Employee Category : Exempt

Employee Name : McCarthy, Ryan S

Employee Number : 648137
Draft Number : 115

Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs		SAT 19-FEB 0.00	SUN 20-FEB 0.00	MON 21-FEB 0.00	TUE 22-FEB 0.00	WED 23-FEB 0.00	THUR 24-FEB 0.50	FRi 25-FEB 0.00	Total 0.50	
			Total:	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.50	

McCarthy, Ryan S

Employee Signature

Approver For Employee Signature

Tammi, Carl E

Approver Signature

Approver Signature

Total Regular Hours: 0.50
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period

05-MAR-22 - 11-MAR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category

Exempt

Employee Name

Employee Number

McCarthy, Ryan S

648137

Draft Number

115

Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs	95-MAR 0.00	SUN 06-MAR 0.00	MON 07-MAR 0.00	TUE 08-MAR 0.00	WED 09-MAR 0.50	THUR 10-MAR 0.00	FRI 11-MAR 0.50	Total 1.00	
		To	otal: 0.00	0.00	0.00	0.00	0.50	0.00	0.50	1.00	

McCarthy, Ryan S

Employee Signature

Approver For Employee Signature

Tammi, Carl E Approver Signature

Total Regular Hours: Total Overtime Hours: 1.00 0.00 **Total Non-Worked Hours:** 0.00

Timecard Period Organization

19-FEB-22 - 25-FEB-22

Assignment Category :

41.ACM.US_ME.7965 A - Full Time

Employee Category

Exempt

Employee Name

White, Taylor Patrick (Taylor)

Employee Number

721088

Draft Number

115

Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs	19-1	FEB 0.00	20-FEB 0.00	MON 21-FEB 0.00	TUE 22-FEB 0.00	WED 23-FEB 0.00	THUR 24-FEB 4.00	FRI 25-FEB 0.00	Total 4.00	
			Total: (0.00	0.00	0.00	0.00	0.00	4.00	0.00	4.00	

White, Taylor Patrick (Taylor)

Employee Signature

Approver For Employee Signature

McCarthy, Ryan S

Approver Signature

Total Regular Hours: Total Overtime Hours: 4.00 0.00 **Total Non-Worked Hours:** 0.00

AECOM 250 Apollo Drive Chelmsford, MA 01624 aecom.com

March 18, 2022

AECOM Reference 60139734-inv. 115

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2022 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonlc Road, Rochester, NH Period Ending March 14, 2022

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2022 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

RECEIVED MAR 22 12003-

Project Budget Information

This invoice is for \$2,707.00. The total authorized budget for this project for the 2021 Calendar year is \$22,000 and for the 2022 calendar year is \$22,600. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2022 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1400 2021 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to the Phytoremediation Memo included as an attachment to the Annual Report. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$710.00.

Task 1500 2022 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to a bi-monthly Site inspection. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$1,997.00.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Ryan McCarthy, MS Project Manager

AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

Check Payment to: **AECOM Inc.** An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 **Account Number 5800937020** ABA Number 026009593 SWIFT CODE BOFAUS3N

Received 05/24/2022 Environmental - T. Murphy

250 Apollo Drive, Chelmsford, MA 01824 Tel: 978-905-2100 Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON 6 LIBERTY LANE W

HAMPTON, NH 03842 **United States**

Invoice Date: 20-MAY-22 Invoice Number: 2000626357

Agreement Number: EM13046004 Agreement Description: Conversion - 177741

Payment Term: 30 DAYS Agreement Description: TAR 01/12/21

Please reference Invoice Number and Project Number with Remittance

Project Name: UNITIL PHYTOREMEDIATION PROGRAM Project Number : 60139734 Bill Through Date: 15-MAR-22 - 29-APR-22 Task Name: 2022 GW Supp Install Task Number: 1500

Labor Bill Rate					
Employee Name/Title	Title/Expenditure	<u>Date</u>	<u>Hours</u>	Bill Rate	Billed Amt
Callahan, Colin P	P13	25-MAR-22	1.00	125.00	125.00
Callahan, Colin P	P13	22-APR-22	1.00	125.00	125.00
Callahan, Colin P	P13	29-APR-22	2.00	125.00	250.00
Hunt, Audrey Clarke	P07	29-APR-22	8.00	55.00	440.00
McCarthy, Ryan S	P16	01-APR-22	1.00	170.00	170.00
McCarthy, Ryan S	P16	15-APR-22	1.00	170.00	170.00
McKenna, James Walter (Walter)	P08	29-APR-22	7.00	65.00	455.00

Total Labor Bill Rate	21.00	1,735.00

Dal	h		اطم	ما
Rei	mo	urs	ao	le

Expenditure Type	Employee/Vendor Name	<u>Date</u>	Inv Number	Raw Cost	Multiplier	Billed Amt
Materials	Howe, Charles S	24-FEB-22	EXP8219098	10.58	1.0500	11,11
Total Reim	bursable			10.58		11.11

Task Total : 2022 GW Supp Install 1,746.11

Project Total: UNITIL PHYTOREMEDIATION PROGRAM 1,746.11

Invoice Summaries	
Total Current Amount :	1,746.11
Retention Amount :	0.00
Pre-Tax Amount:	1,746,11
Tay Amount:	0.00

Tax Amount : **Total Invoice Amount:**

					OK to Pay
Billing Summaries					
Billing Summary	Current	<u> Prior</u>	<u>Total</u>	<u>Limit</u>	<u>Remain</u>
Billings	1,746.11	356,559.35	358,305.46	382,678.59	24,373.13
Тах	0.00	0.00	0.00		
Billing Total :	1,746.11	356,559.35	358,305.46		

Table 1 Invoice Summary 2022 Phytoremediation Program March-April 2022 Billing Period

Task			Authorized Previously Budget Invoiced		Current Invoice		Total Involced		Remaining Budget		
1500	Continued Groundwater Suppression Installation Activities 2022	\$	22,600.00	\$	1,997.00	\$	1,746.11	\$	3,743.11	\$	18,856.89
Total			\$22,600.00		\$1,997.00		\$1,746.11		\$3,743.11		\$18,856.89

2022 Phyto Funding \$22,600

 Timecard Period
 :
 19-MAR-22 - 25-MAR-22

 Organization
 :
 41.ACM.US_ME.7965

Assignment Category : A - Full Time
Employee Category : Exempt
Employee Name : Callahan, Colin P

Employee Number : 647972 Draft Number : 116

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		19-MAR	20-MAR	21-MAR	22-MAR	23-MAR	24-MAR	25-MAR	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
			Total:	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00

Callahan, Colin P Tammi, Carl E

Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: 1.00
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period

16-APR-22 - 22-APR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A · Full Time

Employee Category :

Exempt

Employee Name

Employee Number

Callahan, Colin P

647972

Draft Number

116

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		16-APR	17-APR	18-APR	19-APR	20-APR	21-APR	22-APR	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00
			Total:	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00

Callahan, Colin P		Stiller, Michael

Employee Signature	Approver For Employee Signature	Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 1.00 0.00 0.00

Timecard Period

23-APR-22 - 29-APR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category :

Exempt

Employee Name

Callahan, Colin P

Employee Number

647972

Draft Number

116

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		23-APR	24-APR	25-APR	26-APR	27-APR	28-APR	29-APR	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	0.00	0.00	2.00	0.00	2.00
			Total:	0.00	0.00	0.00	0.00	0.00	2.00	0.00	2.00

Callahan, Colin P Tammi, Carl E Approver Signature Employee Signature Approver For Employee Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 2.00 0.00 0.00

Timecard Period

23-APR-22 - 29-APR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category :

Exempt

Employee Name

Hunt, Audrey Clarke

Employee Number

Draft Number

708866 116

				SAT	SUN	MON	TUE	WED	THUR	FRI		
Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs		23-APR 0.00	24-APR 0.00	25-APR 0.00	26-APR 8.00	27-APR 0.00	28-APR 0.00	29-APR 0.00	Total 8.00	
			Total:	0.00	0.00	0.00	8.00	0.00	0.00	0.00	8.00	

Hunt, Audrey Clarke Keough Jr, Thomas J Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 8.00 0.00 0.00

Timecard Period

26-MAR-22 - 01-APR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category :

Exempt

Employee Name

McCarthy, Ryan S

Employee Number

648137

Draft Number 116

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		26-MAR	27-MAR	28-MAR	29-MAR	30-MAR	31-MAR	01-APR	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	0.00	0.50	0.00	0.50	1.00
			Total:	0.00	0.00	0.00	0.00	0.50	0.00	0.50	1.00

Tammi, Carl E McCarthy, Ryan S Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 1.00 0.00 0.00

 Timecard Period
 :
 09-APR-22 - 15-APR-22

 Organization
 :
 41.ACM.US_ME.7965

Assignment Category : A - Full Time Employee Category : Exempt

Employee Name : McCarthy, Ryan S

Employee Number : 648137
Draft Number : 116

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs		09-APR 0.00	10-APR 0.00	11-APR 0.00	12-APR 0.00	13-APR 0.00	14-APR 0.00	15-APR 1.00	Total 1.00
			Total ·	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00

McCarthy, Ryan S Tammi, Carl E

Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: 1.00
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period

23-APR-22 - 29-APR-22

Organization

41.ACM.US_ME.7965

Assignment Category :

V - PT Variable

Employee Category :

Non Exempt

Employee Name

McKenna, James Walter (Walter)

Employee Number

721461

Draft Number

116

				SAT	SUN	MON	TUE	WED	THUR	FRI		
Project	Task	Type		23-APR	24-APR	25-APR	26-APR	27-APR	28-APR	29-APR	Total	
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	7.00	0.00	0.00	0.00	7.00	
			Total:	0.00	0.00	0.00	7.00	0.00	0.00	0.00	7.00	

Approver For Employee Signature

McKenna, James Watter (Walter)

Ramos, Maria Theresa Sabusab (Terry) Approver Signature

Employee Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 7.00 0.00 0.00

AECOM 250 Apollo Drive Chelmsford, MA 01824 aecom.com

May 20, 2022

AECOM Reference 60139734-Inv. 116

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2022 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending April 29, 2022

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2022 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Project Budget Information

This invoice is for \$1746.11. The total authorized budget for this project for the 2022 calendar year is \$22,600. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2022 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1500 2022 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to an initial Site inspection, oversight of the backflow preventer activation, and spring watering set-up. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$1,746.11.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Riyan McCarthy, MS Project Manager

AECOM

E: ryan.mccarthy@aecom.com

Colin Callahan

Environmental Scientist

AECOM

E: colin.callahan@aecom.com

Page 70 of 92

aecom.com

Check Payment to: AECOM Inc. An AECOM Company 1178 Paysphere Circle Chicago, IL 60674

ACH Payment to: AECOM Inc. An AECOM Company Bank of America Account Number 5800937020 ABA Number 071000039

Wire Transfer Payment to: AECOM Inc. An AECOM Company Bank of America New York, NY 10001 **Account Number 5800937020** ABA Number 026009593 SWIFT CODE BOFAUS3N

250 Apollo Drive, Chelmsford, MA 01824

Tel: 978-905-2100

Fax:978-905-2101

Federal Tax ID No. 06-0852759

ATTN: MURPHY THOMAS UNITIL SERVICES CORPORATON

6 LIBERTY LANE W

HAMPTON, NH 03842 **United States**

JUN 1 3 2022

Invoice Date: 10-JUN-22

Invoice Number: 2000633989

Accounts Payable Agreement Number: EM13046004
Accounts Payable Agreement Description: TAR 01/12/21

RECEIVED 06/13/2022

Environemntal - T. Murphy

Payment Term: 30 DAYS

Please reference Invoice Number and Project Number with Remittance

Project Number : 60139734

Bill Through Date: 30-APR-22 - 27-MAY-22

Project Name: UNITIL PHYTOREMEDIATION PROGRAM

Task Number: 1500 Task Name: 2022 GW Supp Install

Labor	Bill	Rate	

Employee Name/Title	<u>Title/Expenditure</u>	<u>Date</u>	Hours	Bill Rate	Billed Amt
Callahan, Colin P	P13	20-MAY-22	1.00	125.00	125.00
Callahan, Colin P	P13	27-MAY-22	6.00	125.00	750.00
Chan, Nicholas (Nick)	Junior Field Technician	27-MAY-22	5.00	66.95	334.75
McCarthy, Ryan S	P16	06-MAY-22	0.50	170.00	85.00
McCarthy, Ryan S	P16	13-MAY-22	1.00	170.00	170.00
McCarthy, Ryan S	P16	20-MAY-22	0.50	170.00	85.00
McCarthy, Ryan S	P16	27-MAY-22	4.00	170.00	680.00

Total Labor Bill Rate

18.00

2,229.75

Reimbursable

Expenditure Type	Employee/Vendor Name	<u>Date</u>	<u>Inv Number</u>	Raw Cost	<u>Multiplier</u>	Billed Amt
Lunch	Hunt, Audrey Clarke	26-APR-22	EXP8301337	33.08	1.0800	35.73
Lunch	McCarthy, Ryan S	23-MAY-22	EXP8340330	50.62	1.0800	54.67
Materials	Callahan, Colin P	26-MAY-22	EXP8339629	5.00	1.0500	5.25
Mileage	Hunt, Audrey Clarke	26-APR-22	EXP8301337	99.45	1.0800	107.41
Mileage	McKenna, James Walter (Walter)	26-APR-22	EXP8291442	87.75	1.0800	94.77
Mileage	McCarthy, Ryan S	23-MAY-22	EXP8340330	49.14	1.0800	53.08
Mileage	Callahan, Colin P	26-MAY-22	EXP8339629	81.90	1.0800	88.45
Mileage	Chan, Nicholas (Nick)	26-MAY-22	EXP8340380	79.44	1.0800	85.80

Total Reimbursable

486.38

525.16

: 2022 GW Supp Install Task Total

2,754.91

Project Total: UNITIL PHYTOREMEDIATION PROGRAM

2,754.91

Invoice Summaries

Total Current Amount: Retention Amount: Pre-Tax Amount: Tax Amount:

2,754.91 0.00 54.91 0.00

Total Invoice Amount:

2,754,91 OK to Pay

Page 71 of 92

Billing Summaries Billing Summary Prior <u>Current</u> **Total** <u>Limit</u> Remain Billings 358,305.46 382,678.59 2,754,91 361,060.37 21,618.22 Tax 0.00 0.00 0.00 Billing Total: 2.754.91 358,305.46 361,060.37

Outstanding Invoices		
Invoice Number PAID 2000626357 2000633989	<u>Invoice Date</u> 20-MAY-22 10-JUN-22	Invoice Balance 1,746.11 2,754.91
Outstanding Total :		4 501 02

PO 78165 30.40.00.00.182.29.00

 Timecard Period
 :
 14-MAY-22 - 20-MAY-22

 Organization
 :
 41.ACM.US_ME.7965

117

Assignment Category : A - Full Time Employee Category : Exempt

Employee Name : Callahan, Colin P
Employee Number : 647972

Draft Number

SAT SUN MON TUE WED THUR FRI Project Туре 14-MAY 15-MAY 16-MAY 17-MAY 18-MAY 19-MAY 20-MAY Total 1500 2022 GW Supp Install 60139734 UNITIL ROCHESTER PHYTO Regular Hrs 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 Total: 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Callahan, Colin P Tammi, Carl E

Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: 1.00
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

 Timecard Period
 :
 21-MAY-22 - 27-MAY-22

 Organization
 :
 41.ACM.US_ME.7965

Assignment Category : A - Full Time
Employee Category : Exempt
Employee Name : Callahan, Colin P

Employee Number : 647972 Draft Number : 117

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type Regular Hrs		21-MAY 0.00	22-MAY 0.00	23-MAY 0.00	24-MAY 0.00	25-MAY 0.00	26-MAY 6.00	27-MAY 0.00	Total 6.00
			Total:	0.00	0.00	0.00	0.00	0.00	6.00	0.00	6.00

Callahan, Colin P Stiller, Michael

Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: 6.00
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period

21-MAY-22 - 27-MAY-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

117

Employee Category

Exempt

Employee Name

Employee Number

Chan, Nicholas (Nick)

Draft Number

725473

Project	T
60139734 UNITIL ROCHESTER PHYTO	1:

1500 2022 GW Supp Install

Type Regular Hrs

SAT 21-MAY 0.00

0.00

Total:

Approver For Employee Signature

SUN 22-MAY 0.00

0.00

MON 23-MAY 0.00

0.00

TUE WED 24-MAY 25-MAY 0.00

0.00

26-MAY 0.00 5.00

0.00

THUR

5.00

McCarthy, Ryan S

Approver Signature

27-MAY 0.00

Total 5.00

0.00

5.00

FRI

Chan, Nicholas (Nick) Employee Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours:

5.00 0.00 0.00

Page 75 of 92

Timecard Period

30-APR-22 - 06-MAY-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category :

Exempt

Employee Name

McCarthy, Ryan S

Employee Number

648137

Draft Number

117

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		30-APR	01-MAY	02-MAY	03-MAY	04-MAY	05-MAY	06-MAY	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.50
			Total:	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.50

McCarthy, Ryan S Tammi, Carl E Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 0.50 0.00 0.00

Timecard Period

07-MAY-22 - 13-MAY-22

Organization

41_ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category :

Exempt

Employee Name

McCarthy, Ryan S

Employee Number

648137

Draft Number

117

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Typ e Regular Hrs		07-MAY 0.00	00.00	0.00	10-MAY 0.50	11 -MAY 0.00	12-MAY 0.50	13-MAY 0.00	Total 1.00
			Total :	0.00	0.00	0.00	0.50	0.00	0.50	0.00	1.00

McCarthy, Ryan S Employee Signature Approver For Employee Signature Albrecht, John

Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours:

1.00 0.00 0.00

Timecard Period : 14-MAY-22 - 20-MAY-22
Organization : 41.ACM.US_ME.7965

Assignment Category : A - Full Time
Employee Category : Exempt

Employee Name : McCarthy, Ryan S

Employee Number : 648137
Draft Number : 117

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project	Task	Туре		14-MAY	15-MAY	16-MAY	17-MAY	18-MAY	19-MAY	20-MAY	Total
60139734 UNITIL ROCHESTER PHYTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.50
			Total:	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.50

McCarthy, Ryan S

Employee Signature

Approver For Employee Signature

Approver Signature

Total Regular Hours: 0.50
Total Overtime Hours: 0.00
Total Non-Worked Hours: 0.00

Timecard Period

21-MAY-22 - 27-MAY-22

Organization

41.ACM.US_ME.7965

Assignment Category :

A - Full Time

Employee Category : Employee Name

Exempt

Employee Number :

McCarthy, Ryan S

648137

Draft Number

117

				SAT	SUN	MON	TUE	WED	THUR	FRI	
Project 60139734 UNITIL ROCHESTER PHYTO	Task 1500 2022 GW Supp Install	Type		21-MAY	22-MAY	23-MAY	24-MAY	25-MAY	26-MAY	27-MAY	Total
60139734 UNITIE ROCHESTER PHTTO	1500 2022 GW Supp Install	Regular Hrs		0.00	0.00	0.50	0.50	0.00	3.00	0.00	4.00
			Total:	0.00	0.00	0.50	0.50	0.00	3.00	0.00	4.00

McCarthy, Ryan S Tammi, Carl E Employee Signature Approver For Employee Signature Approver Signature

Total Regular Hours: Total Overtime Hours: Total Non-Worked Hours: 4.00 0.00 0.00

AECOM 250 Apollo Drive Chelmsford, MA 01824 aecom.com

June 10, 2022

AECOM Reference 60139734-Inv. 119

Mr. Thomas Murphy Unitil Services Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Invoice for Activities Related to 2022 Phytoremediation Program Petrolane/ Northern Utilities, Inc. Site (DES #198712002, Project #432) 32 Gonic Road, Rochester, NH Period Ending May 27, 2022

Dear Mr. Murphy,

Enclosed for your information is an invoice and Progress Report for professional environmental consulting services related to the 2022 Phytoremediation Program. Elements of the Phytoremediation Program include continued groundwater suppression maintenance and evaluation activities at the former manufactured gas plant located at the above referenced property.

Project Budget Information

This invoice is for \$2,754.91. The total authorized budget for this project for the 2022 calendar year is \$22,600. As part of the scope of work, AECOM will perform six limited and two full irrigation events at the Site during the 2022 growing seasons (April – October). AECOM will also perform Site inspections on a bi-monthly basis for the calendar year. This project was originally proposed on a time and materials basis to be billed on a monthly basis.

Work Performed

The following section briefly describes work and charges for this invoicing period for each task:

Task 1500 2022 Continued Groundwater Suppression Evaluation Activities

During this invoicing period, costs incurred were related to a May Site inspection, and expenses associated with the April/ May site visits. As detailed in Table 1 and the attached invoice, costs associated with these tasks was \$2,754.91.

If you have any questions regarding this invoice, please do not hesitate to call me at 603-770-4945. It has been a pleasure assisting you with this important project, and we look forward to providing additional service in the future.

Yours sincerely,

Ryan McCarthy, MS Project Manager AECOM

E: ryan.mccarthy@aecom.com

aecom.com Page 80 of 92

Table 1 Invoice Summary 2022 Phytoremediation Program May 2022 Billing Period

	Task	A	luthorized Budget	reviously Invoiced	Current Invoice	Tot	tal Invoiced	Remaining Budget	
1500	Continued Groundwater Suppression Installation Activities 2022	\$	22,600.00	\$ 3,743.11	\$ 2,754.91	\$	6,498.02	\$	16,101.98
Tota	l		\$22,600.00	\$3,743.11	\$2,754.91		\$6,498.02		\$16,101.98

2022 Phyto Funding \$22,600

19 Wakefield Street Rochester, New Hampshire

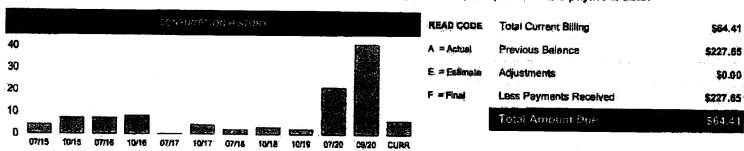
WATER & SEWER BILL

Customer Copy Keep this portion for your records

QUSTO MER NAN	ĭΕ				SERVICE (LOCATION			
NORTHERN UTILITY	ES INC		779 COLUMBUS						
ELL NUMBER	ERL:	0475		AUC	€ggy = £		Duff DATE		
14100490	07/27/			15	2340	1. 100011	08/23/2021		
CHARGE DESCRIPTION	READ CODE		SURRENT TEADDATE	PREJOUS - READING	CURRENT READING	USAGE	CHARGLAMOUNT		
COMM WATER TURN ON	A	09/30/2020	06/29/2021 11/30/2020	168	172	6	\$34.41 \$30.00		

RECEIVED

AUG 2 2021


RECEIVED

ACCOUNTS PAYABLE

AUG 2 2021

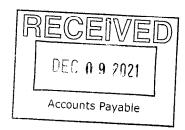
ACCOUNTS PAYABLE

100 CU FT. = 748 Gallons Rate per 100 oublo feet Interest accrues daily from the past due date at the rate of 8% interest per annum computed to the payment date.

TPAYMENTS ONLINE AT WWW.ROCHESTERNH.RETTY WATER \$5.65 PER UNIT, MIN. \$22,14: SEWER \$7.45 PER UNIT, MIN. \$24.51 HTTPS://WWW.ROCHESTERNH.NET/PUBLIC-WORKS/FILES/2020-CCR

** THE TACK AND DESIGNATION FOR PROPERTY OF THE PROPERTY OF TH

19 Wakefield Street Rochester, New Hampshire


WATER & SEWER BILL

Customer Copy
Keep this portion for your records

\$34.98 \$64.41 \$0.00 \$64.41 \$34.98

77071

	CUSTOMER	NAME			to the second second	SERVICE	ELOCATION	
	NORTHERN UTIL	ITIES INC				770 CC	DLUMBUS	
BILL NUMBER		BILL I	DATE		ACC	OUNT#		DUE DATE
101640		10/28	/2021		15	2340		12/01/2021
CHARGE DES	CRIPTION	READ CODE	PREVIOUS READ DATE	CURRENT READ DATE	PREVIOUS READING	CURRENT READING	USAGE	CHARGE AMOUNT
COMM WATER		Α	06/29/2021	10/04/2021	172	178	6	\$34.98

100 CU FT. = 748 Gallons Rate per 100 cubic feet Interest accrues daily from the past due date at the rate of 8% interest per annum computed to the payment date.

			cc	ONSUMPTIC	ON HISTO	RY			7.00		READ CODE	Total Current Billing
40											A = Actual	Previous Balance
30											E = Estimate	Adjustments
20											F = Final	Less Payments Received
10		Milanii arovii										Programme and the second of th
0				II wax	Property.	okula ele						Total Amount Due
	10/15 07/16	10/16	07/17 10	/17 07/18	10/18	10/19	07/20	09/20	06/21	CHRR		

PETACH AND BETLIEN THE PUBLICA RELIGIM WITH VOLID BAVARCHES 0

PAYMENTS ONLINE AT WWW.ROCHESTERNH. NET
WATER \$5.83 PER UNIT, MIN \$22.14; SEWER \$7.43 PER UNIT, MIN \$34.31
MASTERCARD, DISCOVER, AMX PAYMENTS AT TAX OFFICE, 2.79% SURCHARGE

49 Wale heat Sueva Roches er, this Hampshire WATER & SEWER BILL

Cusionier Cony Per Waraban haran series

> \$30.00 \$34,98 \$0.00 \$34.98 \$30.00

CUSTOMER NAME	SERVICE LOCATION
MORTUTEN ISILITES INC	770 COLECTIVE

BILL NUMBER	BILL DATE	ACCOUNT #	DUE DATE
		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
*** *** ****	5 \$450k2	152:346	(4/28/2622

\$30,00 11/30/2021 TURN OFF

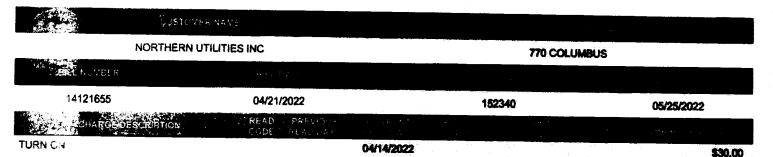
Accounts Payable

100 CU FT. = 748 Gallons Rate per 100 cubic feet

Interest accrues daily from the past due date at the rate of 8% interest per annum computed to the payment date

21 22 ON NC

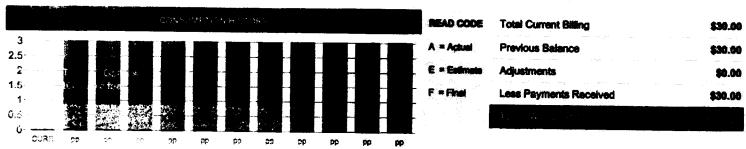
					CONS	JMPTIO	N HISTO	RY					READ CODE] eg ri C am e ri Beeko
3		- 3000	65.54								Á		A - Acual	Fredour Desence
2.5										Ě			L = Estimate	Adjor imena
2 1.5			1000										I = Final	Less Payments Received
1							55							
0.5					57									Total Amount Due
0	CURR	51	pp	D.C	T:C	55	ŧμ	¢¢.	DE.	ec	pp	ap.		


FARRY SOM HEW WOODCH! ERMINS
WATER STOPPHRIME MINSOLES SEVENS CALERON DAMAGES OF MANAGEMENTS OF THE SERVICE AND ASSESSMENT OF THE SERVICE ASSESSMENT OF THE SERVICE ASSESSMENT OF THE SERV

209 Chestnut Hill Rd. Rochester, NH 03867 **WATER & SEWER BILL**

Customer Copy
Keep this portion for your records

78560


RECEIVED

APR 26 2022

Accounts Payable

100 CO FT. = 748 Gallons
Rate par 100 cubic feet

Interest accrues daily from the past due date at the rate of 8% interest per annum computed to the payment date.

TT/AYMENTS CIRCINE AT 15 WIS COMESTERMALNET***
WATER \$5.83 PER UNIT, SURE \$22.84, SEWER \$7.43 PER UNIT, MIN. \$34.31
MASTERCARD, DISCOVED TO MAIN FROM MENTS AT TAX OFFICE 2.79% SURCHARGE

Schedule 5 Cost Amortization

NORTHERN UTILITIES, INC. - NEW HAMPSHIRE DIVISION CALCULATION OF EXCESS ENVIRONMENTAL RESPONSE COST AMORTIZATION

Line No	Description	July	/ 10 - June 11	1 Jul	y 11 - June 12	2 .	July 12 - June 13	Jı	uly 13 - June 14	Jı	uly 14 - June 15	Ju	ıly 15 - June 16	Jul	ly 16 - June 17	Jul	y 17 - June 18	Jul	/ 18 - June 19	Jul	ly 19 - June 20	Jul	y 20 - June 21	J	uly 21 - June 22
1	NH FIRM GAS REVENUES FROM PRIOR PERIOD (includes total firm and transp		57,304,148 on (excluding		48,937,053 stem revenues		49,683,620		\$63,862,785		\$73,145,859		\$51,311,654		\$59,038,627		\$66,568,530		\$74,616,651		\$61,186,711		\$67,254,093		\$80,378,260
2	5% of Line 1	\$	2,865,207	\$	2,446,853	\$	2,484,181	\$	3,193,139	\$	3,657,293	\$	2,565,583	\$	2,951,931	\$	3,328,426	\$	3,730,833	\$	3,059,336	\$	3,362,705	\$	4,018,913
3	TOTAL ERC COST TO BE RECOVERED (FROM SCHEDULE 1, Line 7)	\$	121,209	\$	159,020	\$	175,406	\$	40,881	\$	112,198	\$	2,179,885		\$54,154		\$283,143		\$203,357		\$77,165		\$118,256		\$48,434
4	EXCESS AMORTIZATION DEFERRED FROM PRIOR YEARS	\$	-			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
5	CARRYING CHARGES	\$	-			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
6	EXCESS AMORTIZATION FROM PRIOR YEARS PLUS CARRYING CHARGES (LINE 4 PLUS LINE 5)	\$	-			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
7	TOTAL POTENTIAL ERC COST TO RECOVERED (LINE 3 PLUS LINE 6)	\$	121,209	\$	159,020	\$	175,406	\$	40,881	\$	112,198	\$	2,179,885	\$	54,154	\$	283,143	\$	203,357	\$	77,165	\$	118,256	\$	48,434
8	EXCESS AMORTIZATION TO BE DEFERRED (LINE 2 LESS LINE 7; IF POSITIVE ENTER ZERO)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	_	\$	-	\$	-
9	EXCESS AMORTIZATION FROM PRIOR PLUS CARRYING CHARGES TO BE RECOVERED (LINE 7 MINUS LINE 3; IF NEGATIVE ENTER ZERO)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-

Note: July 2014 - June 2018 data shown in line 1 has been corrected from prior filings to reflect the July - June period.

Attachment A Insurance Recovery Allocation

Northern Utilities, Inc. - New Hampshire Division Allocation of Environmental Insurance Recoveries

Attachment A Page 1 of 2

ERC Recovery Allocation

	Allocation %	Recovery Amount	% of Recovery Total	Resolution Fee	% of Resolution Fee
Recovery Total		\$ -			
Dispute Resolution F	ee			\$0.00	0.0%
New Hampshire					
MGP Sites	0.00%	\$0.00		\$0.00	
Ratepayer	100.00%	\$0.00		\$0.00	
Non - MGP	0.00%	\$0.00		\$0.00	
Total		\$0.00	0.0%	\$0.00	0.0%

Northern Utilities, Inc. - New Hampshire Division Allocation of Environmental Insurance Recoveries

ERC Recovery Allocation

		Recovery	% of Recovery		% of Resolution
	Allocation %	Amount	Total	Resolution Fee	Fee
Recovery Total		\$ -			
Dispute Resolution F	ee			\$0.00	0.0%
MGP Sites	0.00%	\$0.00		\$0.00	
Shareholder	0.00%	\$0.00		\$0.00	
Ratepayer	0.00%	· ·		\$0.00	
Non - MGP	0.00%	<u>\$0.00</u>		<u>\$0.00</u>	
Total		\$0.00	0.0%	\$0.00	0.0%
New Hampshire					
MGP Sites	0.00% 0.00%	\$0.00		\$0.00	
Ratepayer	0.00%	\$0.00		\$0.00	
Non - MGP	0.00%	\$0.00		<u>\$0.00</u>	
Total		\$0.00	0.0%	\$0.00	0.0%
<u>Maine</u>					
Shareholder	50.00%	\$0.00		\$0.00	
Ratepayer	50.00%	\$0.00		\$0.00	
Total		\$0.00	0.0%	\$0.00	0.0%

Northern Utilities, Inc.- New Hampshire Division 2022 - 2023 Environmental Response Costs

			Allocation Amount	New Ham 059	-
			0.0%		
Vendor Name	Invoice #	Total Invoice	NH	517628	517629
		\$0.00	\$0.00		\$0.00
Total		\$0.00	\$0.00	\$0.00	\$0.00

Total Insurance Expense	\$0.00

Total Insurance Recovery \$0.00

Contracting Project Manager

Intentionally Left Blank

COMPANY NAME

NORTHERN UTILITIES, INC.

EXETER GAS WORKS

LINE Schedule 4A NO.

- 1. SITE LOCATION: Water Street and Green Street in Exeter, NH
- DATE SITE WAS FIRST INVESTIGATED AS A DISPOSAL SITE:
 The U.S. Environmental Protection Agency (EPA) conducted a Preliminary Assessment in 1982
- 3. SUMMARY OF MATERIAL DEVELOPMENTS AND INTERACTIONS WITH ENVIRONMENTAL AUTHORITIES (July 1, 2021 June 30, 2022):
 - Northern continues to retain AECOM to coordinate communications with the Exeter Housing Authority (EHA), Exeter Department of Public Works (DPW), and Philips Exeter Academy (PEA). Although AECOM has also been retained to manage groundwater sampling associated with the Site's Groundwater Monitoring Program (GMP), no remediation-related activities were conducted by AECOM during the reporting time period.
 - In July 2021, Northern received notification from the DPW of a sewer expansion project that included three horizontal directional drills under the Squamscott River and connection to the recently rebuilt lift station adjacent to the EHA and within the Site's GMP. In September 2021, AECOM concluded that the DPW sewer expansion project would not impact the area covered by the GMP (See Exhibit 1, Schedule 4A).
- 4. NEW HAMPSHIRE SITE REMEDIATION PROGRAM PHASE:

The former Exeter Gas Works continues to progress towards site closure via the NH DES overseen GMP. However, no remediation work was conducted during the reporting time period.

5. NATURE AND SCOPE OF SITE CONTAMINATION:

Areas containing residual materials from the historic operation and decommissioning of the former manufactured gas plant were discovered on small parcels of land on the north and south sides of Water Street. These residuals, which include coal tars and oils, were found in the soil at discrete locations and in underlying groundwater. The objective of the cleanup project, as discussed with the NH DES, has been to stabilize affected soils to the extent practicable and to enhance the natural attenuation of any residuals in groundwater.

Northern prepared a project Completion Report that was submitted to NH DES in January 2002. The Completion report documented that all construction work was completed in accordance with the Remedial Action Plan (RAP) that was submitted to the NH DES in October 2001. The remedy consisted of the in-situ solidification of MGP residuals on the main parcel by auger mixing using a formulation of Portland cement and organophilic clay followed by grading and planting for site closure. The remedy also consisted of the injection of an oxygen release compound (ORC) into the soils and groundwater in the vicinity of the former settling lagoons on Exeter Housing Authority property. Finally, activity and use restrictions were noticed on the affected property deeds.

Subsequent to the completion of the site remediation, MGP residuals were identified in sediments at the mouth of a stormwater outfall discharging into the Squamscott River. The residuals were discharged to the storm sewer system as part of the process activities during the operation of the MGP. The sediment impacts were remediated successfully in 2016 with NH DES required monitoring of the Squamscott River continuing into and eventually terminating in 2017.

6. HISTORY AND CURRENT STATUS OF USE AND OWNERSHIP OF SITE:

The Exeter Gas Works operated from 1864 through 1955. The gas works was owned and operated by several companies during that time, including Exeter Gas Light Company in 1864, Strafford-York Gas Company in 1911, and Allied New Hampshire Gas Company in 1942. Allied New Hampshire Gas Company was a predecessor of Northern Utilities. Northern sold the eastern portion of the property to the Town of Exeter in 1978. In 1981 the eastern portion of the former MGP property was transferred to the EHA. This portion of the site is currently used for elderly housing. The western portion of the former MGP is currently owned by Northern and is a landscaped park, which serves as a cap to the underlying stabilized soil.

7. LISTING AND STATUS OF INSURANCE AND 3RD PARTY LAWSUITS AND SETTLEMENTS: None

NAME OF SUIT: Not Applicable

DATE FILED: Not Applicable

STATUS (PENDING/SETTLED): Not Applicable

AECOM 250 Apollo Drive Chelmsford, MA 01824 Exhibit 1 Schedule 4A 978.905.2100 tel 978.905.2101 fax

September 27, 2021

Thomas Murphy
Manager, Environmental Compliance and Business Continuity
Unitil Corp.
6 Liberty Lane West
Hampton, NH 03842

Subject: Town of Exeter Horizontal Directional Drill Evaluation

Dear Tom.

As discussed previously, the Town of Exeter (Town) is planning to install a drain siphon across the Squamscott River and through the Swasey Parkway (Parkway) to the Town's pump station. The installation will involve the horizontal directional drilling (HDD) of three lines under the river with the exit pit located in the Parkway and within the Groundwater Management Zone for the former Manufactured Gas Plant (MGP) site. Note that in 2020, AECOM provided oversight for the installation of test borings in the area of the exit pit and did not observe evidence of MGP impacts. In September 2021, AECOM conducted a field investigation that confirmed that MGP residuals are not present in the path of the HDD lines. A summary of the investigation activities and findings is provided below.

On September 8th, AECOM met with Kevin Garvey, the Town's Engineering Firm, Wright-Pierce, to delineate the investigation area within the Parkway. The information was used by AECOM's drilling subcontractor, Geosearch, Inc., in contacting Dig Safe to mark utility lines in the area.

On September 13th, a private utility locating company, TPI Environmental, Inc., conducted a geophysical survey of the investigation area and specifically cleared the nine (9) boring locations, i.e. three boring locations along the proposed path of each of the three HDD lines. Geosearch staff then used a vacuum truck to pre-clear the locations to a depth of at least one meter below ground surface (bgs). The soil from the preclearing activities was returned to the locations in the order they were removed at the end of the day.

On September 15th, Geosearch advanced the borings to the depths determined by Wright-Pierce as appropriate to intersect the intended paths of the HDD lines. The HDD lines were identified as 1, 2, and 3 (upstream to downstream). The sampling locations along the lines were identified as follows:

- East closest to the Squamscott River at a depth of 28 ft. bgs;
- · Center at a depth of 22 ft. bgs; and
- West closest to the structure at a depth of 6 ft. bgs.

AECOM staff prepared boring logs for each location (Attachment A). They provide the following findings:

The water table was observed at approximately 5 ft. bgs;

- Soil in the investigation area was observed to be primarily sand, gravel, and silt with some cobble; and
- · Odor and staining were not observed.

AECOM collected composite soil samples at each location from the interval of +2 ft. to -2 ft. of the intended path of the lines. The samples were analyzed for the principal indicators of MGP residuals: benzene, toluene, ethylbenzene, xylenes, and naphthalene. The results from the analyses are summarized in Table 1. As illustrated in the Table, the constituent concentrations were determined to be less than the reportable concentration limits for the analyses and were significantly less than the Soil Remediation Criteria established by the New Hampshire Department of Environmental Services (NHDES). The laboratory report is provided as Attachment B.

A review of the field sampling observations and analytical results allows us to conclude that there is no evidence of the presence of MGP contamination in the investigation area. Please give me a call if we can provide any additional information related to these activities or the project in general.

Best Regards,

Colin Callahan

Project Manager

Mark McCabe

Vice President, Account Management

Cc: Kevin Garvey, Wright-Pierce

Table 1
Summary of Results
HDD Path Characterization
Swasey Parkway, Exeter, NH
September 15, 2021

	Sample		Constitu	ient Concentrat	ion (mg/K	g)
Location	Depth (ft. bgs)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
West 1	4-8	<0.005	<0.005	<0.005	<0.015	<0.005
West 2	4-8	<0.003	<0.003	< 0.003	<0.009	<0.003
West 3	4-8	<0.002	<0.002	<0.002	<0.007	<0.002
Center 1	20-24	<0.004	<0.004	<0.004	<0.012	<0.004
Center 2	20-24	<0.005	<0.005	<0.005	<0.013	<0.005
Center 3	20-24	<0.006	<0.006	<0.006	<0.017	<0.006
East 1	26-30	<0.003	<0.003	< 0.003	<0.010	<0.003
East 2	26-30	<0.004	<0.004	<0.004	<0.011	<0.004
East 3	26-30	<0.005	<0.005	<0.005	<0.013	<0.005
NHDES Re	emediation Criteria ¹	0.3	100	120	500	5

Notes:

1 Env-Or 606.19

bgs below ground surface

Attachment A Boring Logs

-	A=C		-			EAST-1				
250 Apollo D (978) 905-21	Orive, Chelms 00 - office	ford MA 0182	4			Page1 of1				
	ame: Exete	r NH - Unit	il Gas	Drilling Co	ompany: Geosearch	Surface Comp: Flush Stick Up Height:				
Project No	umber: 605	36962.300		Drilling M	ethod: Direct Push Technology	Bentonite (bgs):				
Date Start	ted Drilling	: 9/15/2021		Rig Type:	g Type: Geoprobe Pre Pack Filter Pack (bgs):					
Date Finis	shed Drillin	g: 9/15/202	<u> </u>	Date Pre-	ate Pre-Cleared: 9/13/2021 Riser (bgs):					
Location:	Swasey Pa	arkway, Ex	eter NH	Water Lev	vel While Drilling (bgs): ~5'	Well Scrn: Depth (bgs):				
Logged B	y: C. Callal	nan		Total Dep	th of Boring (bgs): 30'	2" PVC 10-slot				
	T			1		(Note: bgs = below ground surface)				
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)		Gr	ound Surface: grass				
0-5	0-6	6"	0.0	Brown-dar	k brown F-M SAND, tight, wet at 5', r	no odors				
5-10		11"	0.0	Grey-dark	brown F SAND, trace GRAVEL, tight	t, damp, no odors				
10-15		18"	0.0	SAA						
15-20		0"	0.0	NO RECO	VERY					
20-25		42"	0.0	Grey SILT	, trace F SAND, loose, wet, no odors					
25-30		58"	0.0	SAA						
					End of Boring at 30' No Refusal Encountered					
	San	ple Colle	cted		Comments:					
East-1	1(26-30')_0 N	91521 @		TEX &	NM = Not Measured					
	N	арппавеЛ	ਓ		Fill = brick/ceramic/coal/ash/wood fr SAA = Same As Above F = Fine, M = Medium, C = Coarse,					

_	AEC Orive, Chelms					EAST-2	
(978) 905-210	00 - office						Page1 of1
Project Na	ame: Exete	r NH - Unit	il Gas	Drilling Co	ompany: Geosearch	Surface Comp: Flush	Stick Up leight:
Project Nu	umber: 605	36962.300		Drilling M	ethod: Direct Push Technology	Bentonite (bgs):	
Date Start	ted Drilling	: 9/15/2021		Rig Type:	Geoprobe	Pre Pack Filter Pack (b	gs):
Date Finis	hed Drillin	g: 9/15/202	21	Date Pre-	Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Lev	rel While Drilling (bgs): ~5'	Well Scrn: Depth (bgs):	
Logged B	y: C. Callal	nan		Total Dep	th of Boring (bgs): 30'	2" PVC 10-s	slot
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)		G	round Surface: grass	(Note: bgs = below ground surface)
0-5	0-5.5	5"	0.0	Brown-dar	k brown F-M SAND, tight, wet at 5',	no odors	
5-10		12"	0.0	Grey brow	n F SAND, tight, damp, no odors		
10-15		18"	0.0	Grey SILT	, trace F SAND, loose, wet, no odor	s	
15-20		30"	0.0	SAA			
20-25		48"	0.0	SAA			
25-30		46"	0.0	SAA			
					End of Boring at 30' No Refusal Encountered		
	Sam	ple Colle	cted		Comments:		
East-2	2(26-30')_0 N	91521 @ laphthalen		TEX &	NR = No Recovery ND = Non Detect NA = Not Applicable due to Hand C NM = Not Measured Fill = brick/ceramic/coal/ash/wood SAA = Same As Above F = Fine, M = Medium, C = Coarse	ragments	

_	AEC Orive, Chelms					EA	ST-3	
(978) 905-210	00 - office						Page	1 of1
Project Na	ame: Exete	r NH - Unit	il Gas	Drilling C	ompany: Geosearch		Surface Comp: Flush Stick Up	Height:
Project Nu	umber: 605	36962.300		Drilling M	ethod: Direct Push Technology		Bentonite (bgs):	
Date Start	ed Drilling	: 9/15/2021		Rig Type:	Geoprobe		Pre Pack Filter Pack (bgs):	
Date Finis	hed Drillin	g: 9/15/202	:1	Date Pre-	Cleared: 9/13/2021		Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Lev	vel While Drilling (bgs): ~5'		Well Scrn: Depth (bgs):	
Logged By	y: C. Callal	nan		Total Dep	th of Boring (bgs): 30'		2" PVC 10-slot	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)			Ground S	(Note: bgs	s = below ground surface)
0-5	0-5.5	6"	0.0	Brown F-N	/I SAND, tight, wet at 5', no odors			
5-10		10"	0.0	Grey F SA	ND, tight, damp, no odors			
10-15		16"	0.0	10-12 SAA 12-12.5 CO 12.5-15 G		et, no odor		
15-20		22"	0.0	SAA				
20-25		40"	0.0	SAA				
25-30		44"	0.0	SAA				
					End of Boring at 30' No Refusal Encountere	ed		
	San	ple Colle	cted		Comments:			
East-3	3(26-30')_0		1130 for B	TEX &	NR = No Recovery ND = Non Detect NA = Not Applicable due to Hand NM = Not Measured Fill = brick/ceramic/coal/ash/wood SAA = Same As Above F = Fine, M = Medium, C = Coar	d fragment		

	4=C	:OM	ŀ	CEN	NTER-1
250 Apollo D (978) 905-21		ford MA 0182	4		Page 1 of 1
<u> </u>		r NH - Unit	il Gas	Drilling Company: Geosearch	Surface Comp: Flush Stick Up Height:
		36962.300	• • • •	Drilling Method: Direct Push Technology	Bentonite (bgs):
		: 9/15/2021	 	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):
		g: 9/15/202		Date Pre-Cleared: 9/13/2021	Riser (bgs):
		arkway, Ex		Water Level While Drilling (bgs): ~5'	Well Scrn: Depth (bgs):
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 25'	2" PVC 10-slot
	1	ı	ı		(Note: bgs = below ground surface)
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground	Surface: grass
0-5	0-5.5	9"	0.0	Brown-dark brown F-M SAND, tight, wet at 5', no odd	ors
5-10		12"	0.0	Grey F SAND, trace C SAND, tight, damp, no odors	
10-15		13"	0.0	Grey SILT, trace F SAND, loose, wet, no odors	
15-20		30"	0.0	SAA	
20-25		44"	0.0	SAA	
				End of Boring at 25' No Refusal Encountered	

Sample Collected	Comments: NR = No Recovery
Center-1(20-24')_091521 @ 1100 for BTEX & Naphthalene	ND = Non Detect NA = Not Applicable due to Hand Clearing NM = Not Measured Fill = brick/ceramic/coal/ash/wood fragments SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

AECOM				CENTER-2		
250 Apollo D (978) 905-21		ford MA 0182	4		Page 1 of 1	
Project Na	ame: Exete	r NH - Unit	il Gas	Drilling Company: Geosearch	Surface Comp: Flush Stick Up leight:	
Project Nu	umber: 605	36962.300		Drilling Method: Direct Push Technology	Bentonite (bgs):	
Date Start	ted Drilling	j: 9/15/2021	1	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):	
Date Finis	hed Drillin	ıg: 9/15/202	21	Date Pre-Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Level While Drilling (bgs): ~5'	Well Scrn: Depth (bgs):	
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 25'	2" PVC 10-slot	
	1	T	T	T	(Note: bgs = below ground surface)	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground Surface: grass		
0-5	0-5.5	10"	0.0	Brown-dark brown F-M SAND, tight, wet at 5', no	odors	
5-10		13"	0.0	Grey F SAND, tight, damp, no odors		
10-15		13"	0.0	10-10.5 Grey GRAVEL 10.5-15 Grey SILT, trace F SAND, loose, wet, no odors		
15-20		24"	0.0	SAA		
20-25		40"	0.0	SAA		
				End of Boring at 25' No Refusal Encountered		

Sample Collected	Comments:
	NR = No Recovery
	ND = Non Detect
Center-2(20-24')_091521 @ 1030 for BTEX &	NA = Not Applicable due to Hand Clearing
Naphthalene	NM = Not Measured
	Fill being the second of a self-second for some sets
	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above

			•			
AECOM				CENTER-3		
250 Apollo D (978) 905-21		ford MA 0182	4		Page 1 of 1	
<u> </u>		r NH - Unit	il Gas	Drilling Company: Geosearch	Page1 of1 Surface Comp: Flush	
		36962.300	040	Drilling Method: Direct Push Technology	Bentonite (bgs):	
		: 9/15/2021		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):	
		ıg: 9/15/202		Date Pre-Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Level While Drilling (bgs): ~5'	Well Scrn: Depth (bgs):	
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 25'	2" PVC 10-slot	
		ı	ı		(Note: bgs = below ground surface)	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground Surface: grass		
0-5	0-5.5	9"	0.0	Brown-dark brown F-M SAND, tight, wet at 5', no o	dors	
5-10		12"	0.0	Grey F SAND, tight, damp, no odors		
10-15		14"	0.0	10-10.5 Grey GRAVEL 10.5-15 Grey SILT, trace F SAND, loose, wet, no odors		
15-20		24"	0.0	SAA		
20-25		42"	0.0	SAA		
				End of Boring at 25' No Refusal Encountered		

Sample Collected	Comments: NR = No Recovery
Center-3(20-24')_091521 @ 1000 for BTEX & Naphthalene	ND = Non Detect NA = Not Applicable due to Hand Clearing NM = Not Measured Fill = brick/ceramic/coal/ash/wood fragments SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

AECOM 250 Apollo Drive, Chelmsford MA 01824				WEST-1		
(978) 905-21	00 - office				Page1 of1	
Project Na	ame: Exete	er NH - Unit	til Gas	Drilling Company: Geosearch	Surface Comp: Flush Stick Up Height:	
Project N	umber: 605	36962.300		Drilling Method: Direct Push Technology	Bentonite (bgs):	
Date Star	ted Drilling	j: 9/15/2021]	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):	
Date Finis	shed Drillin	ıg: 9/15/202	21	Date Pre-Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Level While Drilling (bgs): ~3'	Well Scrn: Depth (bgs):	
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 10'	2" PVC 10-slot	
	T	1	T		(Note: bgs = below ground surface)	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground Surface: grass		
0-5	0-3.5	6"	0.0	Brown F-M SAND, trace GRAVEL, medium tightness, wet at 3', no odors		
5-10		6"	0.0	Brown-grey F-M SAND and GRAVEL, trace COBBLES and SILT, iron modeling, medium tightness, wet, no odors		
	,			End of Boring at 10' No Refusal Encountered		

Sample Collected	Comments:
	NR = No Recovery
	ND = Non Detect
West-1(4-8')_091521 @ 0930 for BTEX &	NA = Not Applicable due to Hand Clearing
Naphthalene	NM = Not Measured
Hapitalaione	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

_	AEC			WEST-2		
(978) 905-21					Page1 of1_	
Project N	ame: Exete	r NH - Unit	il Gas	Drilling Company: Geosearch	Surface Comp: Flush Stick Up leight:	
Project N	umber: 605	36962.300		Drilling Method: Direct Push Technology	Bentonite (bgs):	
Date Star	ted Drilling	: 9/15/2021]	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):	
Date Finis	shed Drillin	ıg: 9/15/202	21	Date Pre-Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey P	arkway, Ex	eter NH	Water Level While Drilling (bgs): ~3'	Well Scrn: Depth (bgs):	
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 10'	2" PVC 10-slot	
	1	ı	ı	T	(Note: bgs = below ground surface)	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground Surface: grass		
0-5	0-3.5	13"	0.0	Tan-brown M-C SAND, some COBBLES, medium tightness, wet at 3', no odors		
5-10		15"	0.0	5-9 SAA 9-10 Brown-grey F SAND and SILT, loose, wet, no odors		
				End of Boring at 10' No Refusal Encountered		

Sample Collected	Comments: NR = No Recovery
West-2(4-8')_091521 @ 0900 for BTEX & Naphthalene	ND = Non Detect NA = Not Applicable due to Hand Clearing NM = Not Measured Fill = brick/ceramic/coal/ash/wood fragments SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

AECOM 250 Apollo Drive, Chelmsford MA 01824				WEST-3		
(978) 905-21		IOIU WA 0102			Page1 of1	
Project Na	ame: Exete	r NH - Unit	il Gas	Drilling Company: Geosearch	Surface Comp: Flush Stick Up Height:	
Project No	umber: 605	36962.300		Drilling Method: Direct Push Technology	Bentonite (bgs):	
Date Start	ted Drilling	: 9/15/2021		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs):	
Date Finis	shed Drillin	g: 9/15/202	21	Date Pre-Cleared: 9/13/2021	Riser (bgs):	
Location:	Swasey Pa	arkway, Ex	eter NH	Water Level While Drilling (bgs): ~3'	Well Scrn: Depth (bgs):	
Logged B	y: C. Calla	han		Total Depth of Boring (bgs): 10'	2" PVC 10-slot	
		ı	ı	T	(Note: bgs = below ground surface	
Depth Range (feet)	Hand Clear Depth (feet)	Re- covery (in)	10.6 PID (ppm)	Ground Surface: grass		
0-5	0-3.5	2"	0.0	Brown F SAND and SILT, medium tightness, wet at 3', no odors		
5-10		30"	0.0	5-7.5 Grey C SAND, loose, wet, no odors 7.5-10 Grey SILT, loose, wet, no odors		
				End of Boring at 10' No Refusal Encountered		

Sample Collected	Comments:
	NR = No Recovery
	ND = Non Detect
West-3(4-8')_091521 @ 0830 for BTEX &	NA = Not Applicable due to Hand Clearing
Naphthalene	NM = Not Measured
. tapitti aisiis	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

Attachment B Analytical Report

Environment Testing America

ANALYTICAL REPORT

Eurofins Environment Testing New England 646 Camp Ave North Kingstown, RI 02852

Tel: (413)789-9018

Laboratory Job ID: 620-1161-1

Client Project/Site: Unitil - Exeter, NH

For:

AECOM 250 Apollo Drive Chelmsford, Massachusetts 01824

Attn: Colin Callahan

Cignis R Huntley

Authorized for release by: 9/23/2021 4:55:30 PM

Agnes Huntley, Project Manager (401)372-3482 agnes.huntley@eurofinset.com

----- LINKS ------

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AECOM Project/Site: Unitil - Exeter, NH

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	20
Lab Chronicle	22
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Definitions/Glossary

Exhibit 1 Schedule 4A

Client: AECOM Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Glossary

 Abbreviation
 These commonly used abbreviations may or may not be present in this report.

 x
 Listed under the "D" column to designate that the result is reported on a dry weight basis

 %R
 Percent Recovery

 CFL
 Contains Free Liquid

 CFU
 Colony Forming Unit

 CNF
 Contains No Free Liquid

 DER
 Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

0

2

9

11

12

14

15

Case Narrative

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Job ID: 620-1161-1

Laboratory: Eurofins Environment Testing New England

Narrative

Job Narrative 620-1161-1

Comments

No additional comments.

Receipt

The samples were received on 9/16/2021 2:05 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

GC/MS VOA

Method 8260C: Internal standard responses were outside of acceptance limits for the following sample: West-1 (4-8')_091521 (620-1161-3). The sample(s) shows evidence of a poor purge due to matrix interference. The sample was re-analized to verify the interference.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

9

10

40

13

14

15

Detection Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Client Sample ID: West-3 (4-8')_091521	Lab Sample ID: 620-1161-1
_	

No Detections.

Client Sample ID: West-2 (4-8')_091521	Lab Sample ID: 620-1161-2

No Detections.

Client Sample ID: West-1 (4-8')_091521	Lab Sample ID: 620-1161-3
--	---------------------------

No Detections.

Client Sample ID: Center-3 (20-24')_091521 Lab Sample ID: 620-1161-4

No Detections.

Client Sample ID: Center-2 (20-24') 091521 Lab Sample ID: 620-1161-5

No Detections.

Lab Sample ID: 620-1161-6 Client Sample ID: Center-1 (20-24') 091521

No Detections.

Lab Sample ID: 620-1161-7 Client Sample ID: East-3 (26-30') 091521

No Detections.

Lab Sample ID: 620-1161-8 Client Sample ID: East-2 (26-30')_ 091521

No Detections.

Lab Sample ID: 620-1161-9 Client Sample ID: East-1 (26-30')_091521

No Detections.

Client Sample ID: Trip Blank Lab Sample ID: 620-1161-10

No Detections.

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM
Project/Site: Unitil - Exeter, NH

Client Sample ID: West-3 (4-8')_091521

Date Collected: 09/15/21 08:30

Date Received: 09/16/21 14:05

Lab Sample ID: 620-1161-1

Matrix: Solid Percent Solids: 82.7

Method: 8260C - Volatile O	rganic Compounds by	GC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	2.25	ug/Kg	≎	09/22/21 09:58	09/22/21 16:38	1
Ethylbenzene	ND	2.25	ug/Kg	₩	09/22/21 09:58	09/22/21 16:38	1
Toluene	ND	2.25	ug/Kg	₩	09/22/21 09:58	09/22/21 16:38	1
m,p-Xylene	ND	2.25	ug/Kg	₽	09/22/21 09:58	09/22/21 16:38	1
o-Xylene	ND	2.25	ug/Kg	₩	09/22/21 09:58	09/22/21 16:38	1
Xylenes, Total	ND	6.74	ug/Kg	₩	09/22/21 09:58	09/22/21 16:38	1
Naphthalene	ND	2.25	ug/Kg	☼	09/22/21 09:58	09/22/21 16:38	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130			09/22/21 09:58	09/22/21 16:38	1
Toluene-d8 (Surr)	98	70 - 130			09/22/21 09:58	09/22/21 16:38	1
1,2-Dichloroethane-d4 (Surr)	109	70 - 130			09/22/21 09:58	09/22/21 16:38	1
Dibromofluoromethane (Surr)	107	70 - 130			09/22/21 09:58	09/22/21 16:38	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: West-2 (4-8')_091521

Date Collected: 09/15/21 09:00 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-2

Matrix: Solid

Percent Solids: 90.6

Method: 8260C - Volatile O	rganic Compounds by C	GC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	2.85	ug/Kg	₩	09/22/21 09:58	09/22/21 17:05	1
Ethylbenzene	ND	2.85	ug/Kg	₩	09/22/21 09:58	09/22/21 17:05	1
Toluene	ND	2.85	ug/Kg	₩	09/22/21 09:58	09/22/21 17:05	1
m,p-Xylene	ND	2.85	ug/Kg	₩	09/22/21 09:58	09/22/21 17:05	1
o-Xylene	ND	2.85	ug/Kg	₩	09/22/21 09:58	09/22/21 17:05	1
Xylenes, Total	ND	8.56	ug/Kg	≎	09/22/21 09:58	09/22/21 17:05	1
Naphthalene	ND	2.85	ug/Kg	☆	09/22/21 09:58	09/22/21 17:05	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130			09/22/21 09:58	09/22/21 17:05	1
Toluene-d8 (Surr)	98	70 - 130			09/22/21 09:58	09/22/21 17:05	1
1,2-Dichloroethane-d4 (Surr)	111	70 - 130			09/22/21 09:58	09/22/21 17:05	1
Dibromofluoromethane (Surr)	109	70 - 130			09/22/21 09:58	09/22/21 17:05	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM Project/Site: Unitil - Exeter, NH

Client Sample ID: West-1 (4-8')_091521

Date Collected: 09/15/21 09:30 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-3

Matrix: Solid

Percent Solids: 81.1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		4.95	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
Ethylbenzene	ND		4.95	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
Toluene	ND		4.95	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
m,p-Xylene	ND		4.95	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
o-Xylene	ND		4.95	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
Xylenes, Total	ND		14.8	ug/Kg	₩	09/23/21 11:33	09/23/21 13:44	1
Naphthalene	ND		4.95	ug/Kg	≎	09/23/21 11:33	09/23/21 13:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			09/23/21 11:33	09/23/21 13:44	1
Toluene-d8 (Surr)	94		70 - 130			09/23/21 11:33	09/23/21 13:44	1
1,2-Dichloroethane-d4 (Surr)	119		70 - 130			09/23/21 11:33	09/23/21 13:44	1
Dibromofluoromethane (Surr)	107		70 - 130			09/23/21 11:33	09/23/21 13:44	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Date Received: 09/16/21 14:05

Client: AECOM

Client Sample ID: Center-3 (20-24')_091521

Date Collected: 09/15/21 10:00

Lab Sample ID: 620-1161-4

Matrix. Solid
Percent Solids: 73.8

Method: 8260C - Volatile O	rganic Compoun	ds by GC/	MS					
Analyte	Result Q	ualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		5.68	ug/Kg	☆	09/22/21 09:58	09/22/21 17:57	1
Ethylbenzene	ND		5.68	ug/Kg	☆	09/22/21 09:58	09/22/21 17:57	1
Toluene	ND		5.68	ug/Kg	☆	09/22/21 09:58	09/22/21 17:57	1
m,p-Xylene	ND		5.68	ug/Kg	☼	09/22/21 09:58	09/22/21 17:57	1
o-Xylene	ND		5.68	ug/Kg	☆	09/22/21 09:58	09/22/21 17:57	1
Xylenes, Total	ND		17.0	ug/Kg	☼	09/22/21 09:58	09/22/21 17:57	1
Naphthalene	ND		5.68	ug/Kg	₽	09/22/21 09:58	09/22/21 17:57	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			09/22/21 09:58	09/22/21 17:57	1
Toluene-d8 (Surr)	100		70 - 130			09/22/21 09:58	09/22/21 17:57	1
1,2-Dichloroethane-d4 (Surr)	113		70 - 130			09/22/21 09:58	09/22/21 17:57	1
Dibromofluoromethane (Surr)	110		70 - 130			09/22/21 09:58	09/22/21 17:57	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: Center-2 (20-24')_091521

Date Collected: 09/15/21 10:30 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-5 Matrix: Solid

Percent Solids: 73.3

Method: 8260C - Volatile O	rganic Compound	ds by GC/MS					
Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	4.28	ug/Kg	☆	09/22/21 09:58	09/22/21 18:24	1
Ethylbenzene	ND	4.28	ug/Kg	₩	09/22/21 09:58	09/22/21 18:24	1
Toluene	ND	4.28	ug/Kg	₩	09/22/21 09:58	09/22/21 18:24	1
m,p-Xylene	ND	4.28	ug/Kg	☼	09/22/21 09:58	09/22/21 18:24	1
o-Xylene	ND	4.28	ug/Kg	₩	09/22/21 09:58	09/22/21 18:24	1
Xylenes, Total	ND	12.8	ug/Kg	☼	09/22/21 09:58	09/22/21 18:24	1
Naphthalene	ND	4.28	ug/Kg	₽	09/22/21 09:58	09/22/21 18:24	1
Surrogate	%Recovery Qu	ualifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104	70 - 130			09/22/21 09:58	09/22/21 18:24	1
Toluene-d8 (Surr)	99	70 - 130			09/22/21 09:58	09/22/21 18:24	1
1,2-Dichloroethane-d4 (Surr)	113	70 - 130			09/22/21 09:58	09/22/21 18:24	1
Dibromofluoromethane (Surr)	110	70 - 130			09/22/21 09:58	09/22/21 18:24	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client Sample ID: Center-1 (20-24')_091521

Date Collected: 09/15/21 11:00 Date Received: 09/16/21 14:05

Project/Site: Unitil - Exeter, NH

Client: AECOM

Lab Sample ID: 620-1161-6 **Matrix: Solid**

Percent Solids: 73.9

Method: 8260C - Volatile O	rganic Compou	ınds by G	C/MS					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		3.98	ug/Kg	☼	09/22/21 09:58	09/22/21 18:50	1
Ethylbenzene	ND		3.98	ug/Kg	₩	09/22/21 09:58	09/22/21 18:50	1
Toluene	ND		3.98	ug/Kg	₩	09/22/21 09:58	09/22/21 18:50	1
m,p-Xylene	ND		3.98	ug/Kg	₩	09/22/21 09:58	09/22/21 18:50	1
o-Xylene	ND		3.98	ug/Kg	₩	09/22/21 09:58	09/22/21 18:50	1
Xylenes, Total	ND		11.9	ug/Kg	₩	09/22/21 09:58	09/22/21 18:50	1
Naphthalene	ND		3.98	ug/Kg	≎	09/22/21 09:58	09/22/21 18:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			09/22/21 09:58	09/22/21 18:50	1
Toluene-d8 (Surr)	99		70 - 130			09/22/21 09:58	09/22/21 18:50	1
1,2-Dichloroethane-d4 (Surr)	110		70 - 130			09/22/21 09:58	09/22/21 18:50	1
Dibromofluoromethane (Surr)	109		70 - 130			09/22/21 09:58	09/22/21 18:50	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Client Sample ID: East-3 (26-30')_091521

Date Collected: 09/15/21 11:30 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-7

Matrix: Solid Percent Solids: 68.8

Method: 8260C - Volatile O	rganic Compounds	by GC/MS					
Analyte	Result Qualif	ier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	4.26	ug/Kg	₩	09/22/21 09:58	09/22/21 19:17	1
Ethylbenzene	ND	4.26	ug/Kg	₩	09/22/21 09:58	09/22/21 19:17	1
Toluene	ND	4.26	ug/Kg	☼	09/22/21 09:58	09/22/21 19:17	1
m,p-Xylene	ND	4.26	ug/Kg	₽	09/22/21 09:58	09/22/21 19:17	1
o-Xylene	ND	4.26	ug/Kg	≎	09/22/21 09:58	09/22/21 19:17	1
Xylenes, Total	ND	12.8	ug/Kg	≎	09/22/21 09:58	09/22/21 19:17	1
Naphthalene	ND	4.26	ug/Kg	☆	09/22/21 09:58	09/22/21 19:17	1
Surrogate	%Recovery Qualit	ier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	70 - 130			09/22/21 09:58	09/22/21 19:17	1
Toluene-d8 (Surr)	99	70 - 130			09/22/21 09:58	09/22/21 19:17	1
1,2-Dichloroethane-d4 (Surr)	112	70 - 130			09/22/21 09:58	09/22/21 19:17	1
Dibromofluoromethane (Surr)	108	70 - 130			09/22/21 09:58	09/22/21 19:17	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: East-2 (26-30')_091521

Date Collected: 09/15/21 12:00 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-8

Matrix: So	lid
Percent Solids: 69	9.5

Analyte	Result Q	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		3.73	ug/Kg	₽	09/22/21 09:58	09/22/21 19:43	1
Ethylbenzene	ND		3.73	ug/Kg	₽	09/22/21 09:58	09/22/21 19:43	1
Toluene	ND		3.73	ug/Kg	₽	09/22/21 09:58	09/22/21 19:43	1
m,p-Xylene	ND		3.73	ug/Kg	₽	09/22/21 09:58	09/22/21 19:43	1
o-Xylene	ND		3.73	ug/Kg	₽	09/22/21 09:58	09/22/21 19:43	1
Xylenes, Total	ND		11.2	ug/Kg	☼	09/22/21 09:58	09/22/21 19:43	1
Naphthalene	ND		3.73	ug/Kg	₩	09/22/21 09:58	09/22/21 19:43	1
Surrogate	%Recovery Q	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			09/22/21 09:58	09/22/21 19:43	1
Toluene-d8 (Surr)	101		70 - 130			09/22/21 09:58	09/22/21 19:43	1
1,2-Dichloroethane-d4 (Surr)	116		70 - 130			09/22/21 09:58	09/22/21 19:43	1
Dibromofluoromethane (Surr)	111		70 - 130			09/22/21 09:58	09/22/21 19:43	

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client Sample ID: East-1 (26-30')_091521

Date Collected: 09/15/21 12:30 Date Received: 09/16/21 14:05

Project/Site: Unitil - Exeter, NH

Client: AECOM

Lab Sample ID: 620-1161-9

Matrix: Solid Percent Solids: 70.3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		3.48	ug/Kg	☼	09/22/21 09:58	09/22/21 20:10	1
Ethylbenzene	ND		3.48	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
Toluene	ND		3.48	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
m,p-Xylene	ND		3.48	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
o-Xylene	ND		3.48	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
Xylenes, Total	ND		10.4	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
Naphthalene	ND		3.48	ug/Kg	₩	09/22/21 09:58	09/22/21 20:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			09/22/21 09:58	09/22/21 20:10	1
Toluene-d8 (Surr)	100		70 - 130			09/22/21 09:58	09/22/21 20:10	1
1,2-Dichloroethane-d4 (Surr)	118		70 - 130			09/22/21 09:58	09/22/21 20:10	1
Dibromofluoromethane (Surr)	112		70 - 130			09/22/21 09:58	09/22/21 20:10	1

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: Trip Blank Date Collected: 09/15/21 00:00

Lab Sample ID: 620-1161-10

Matrix: Solid

Date Received: 09/16/21 14:05			
Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS
Analyte		Qualifier	
Benzene	ND		

Method: 8260C - Volatile Or	Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
Ethylbenzene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
Toluene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
m,p-Xylene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
o-Xylene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
Xylenes, Total	ND		15.0	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
Naphthalene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:46	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	102		70 - 130			09/22/21 09:58	09/22/21 15:46	1			
Toluene-d8 (Surr)	98		70 - 130			09/22/21 09:58	09/22/21 15:46	1			
1,2-Dichloroethane-d4 (Surr)	107		70 - 130			09/22/21 09:58	09/22/21 15:46	1			
Dibromofluoromethane (Surr)	105		70 - 130			09/22/21 09:58	09/22/21 15:46	1			

Job ID: 620-1161-1

Client: AECOM Project/Site: Unitil - Exeter, NH

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		BFB	TOL	DCA	DBFM
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
620-1161-1	West-3 (4-8')_091521	102	98	109	107
620-1161-2	West-2 (4-8')_091521	102	98	111	109
620-1161-3	West-1 (4-8')_091521	96	94	119	107
620-1161-4	Center-3 (20-24')_091521	104	100	113	110
620-1161-5	Center-2 (20-24')_091521	104	99	113	110
620-1161-6	Center-1 (20-24')_091521	102	99	110	109
620-1161-7	East-3 (26-30')_091521	103	99	112	108
620-1161-8	East-2 (26-30')_091521	104	101	116	111
620-1161-9	East-1 (26-30')_091521	104	100	118	112
620-1161-10	Trip Blank	102	98	107	105
LCS 620-3983/1-A	Lab Control Sample	99	97	102	102
LCS 620-4037/1-A	Lab Control Sample	103	101	110	107
LCSD 620-3983/2-A	Lab Control Sample Dup	101	98	101	103
LCSD 620-4037/2-A	Lab Control Sample Dup	101	99	109	107
MB 620-3983/3-A	Method Blank	101	96	102	104
MB 620-4037/3-A	Method Blank	101	98	110	104

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 620-3983/3-A

Matrix: Solid

Analysis Batch: 3980

Client Sam	ple ID:	Metho	d Blank
	Pren	Type: 1	Total/NA

Prep Batch: 3983

-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
Ethylbenzene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
Toluene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
m,p-Xylene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
o-Xylene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
Xylenes, Total	ND		15.0	ug/Kg		09/22/21 09:58	09/22/21 15:19	1
Naphthalene	ND		5.00	ug/Kg		09/22/21 09:58	09/22/21 15:19	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	09/22/21 09:58	09/22/21 15:19	1
Toluene-d8 (Surr)	96		70 - 130	09/22/21 09:58	09/22/21 15:19	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 130	09/22/21 09:58	09/22/21 15:19	1
Dibromofluoromethane (Surr)	104		70 - 130	09/22/21 09:58	09/22/21 15:19	1

Lab Sample ID: LCS 620-3983/1-A

Lab Sample ID: LCSD 620-3983/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 3980

Client	Sample II	D: Lab	Control	Sample
		Dua	a Tumar I	Cotol/NIA

Prep Type: Total/NA

Prep Batch: 3983

Бріке	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	19.70		ug/Kg	_	99	70 - 130	
20.0	20.25		ug/Kg		101	70 - 130	
20.0	18.95		ug/Kg		95	70 - 130	
40.0	39.84		ug/Kg		100	70 - 130	
20.0	20.27		ug/Kg		101	70 - 130	
20.0	19.99		ug/Kg		100	70 - 130	
	Added 20.0 20.0 20.0 40.0 20.0	Added Result 20.0 19.70 20.0 20.25 20.0 18.95 40.0 39.84 20.0 20.27	Added Result 19.70 Qualifier 20.0 19.70 20.25 20.0 18.95 40.0 39.84 20.0 20.27 20.27	Added Result Qualifier Unit 20.0 19.70 ug/Kg 20.0 20.25 ug/Kg 20.0 18.95 ug/Kg 40.0 39.84 ug/Kg 20.0 20.27 ug/Kg	Added Result Qualifier Unit D 20.0 19.70 ug/Kg 20.0 20.25 ug/Kg 20.0 18.95 ug/Kg 40.0 39.84 ug/Kg 20.0 20.27 ug/Kg	Added Result Qualifier Unit D %Rec 20.0 19.70 ug/Kg 99 20.0 20.25 ug/Kg 101 20.0 18.95 ug/Kg 95 40.0 39.84 ug/Kg 100 20.0 20.27 ug/Kg 101	Added Result Qualifier Unit D %Rec Limits 20.0 19.70 ug/Kg 99 70 - 130 20.0 20.25 ug/Kg 101 70 - 130 20.0 18.95 ug/Kg 95 70 - 130 40.0 39.84 ug/Kg 100 70 - 130 20.0 20.27 ug/Kg 101 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 3983

Analysis Batch: 3980							Prep	Batch:	3983
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	20.0	20.34		ug/Kg		102	70 - 130	3	30
Ethylbenzene	20.0	21.08		ug/Kg		105	70 - 130	4	30
Toluene	20.0	19.47		ug/Kg		97	70 - 130	3	30
m,p-Xylene	40.0	40.70		ug/Kg		102	70 - 130	2	30
o-Xylene	20.0	20.95		ug/Kg		105	70 - 130	3	30
Naphthalene	20.0	20.17		ug/Kg		101	70 - 130	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
Toluene-d8 (Surr)	98		70 - 130

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-3983/2-A

Matrix: Solid

Analysis Batch: 3980

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 3983

LCSD LCSD

Surrogate	%Recovery Q	ualifier Limits	
1,2-Dichloroethane-d4 (Surr)	101	70 - 130	_
Dibromofluoromethane (Surr)	103	70 - 130	

Client Sample ID: Method Blank

Prep Type: Total/NA

8

Prep Batch: 4037

Lab Sample ID: MB 620-4037/3-A

Matrix: Solid

Analysis Batch: 4029

MR	MR
	_

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
Ethylbenzene	ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
Toluene	ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
m,p-Xylene	ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
o-Xylene	ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
Xylenes, Total	ND	15.0	ug/Kg		09/23/21 11:33	09/23/21 13:18	1
Naphthalene	ND	5.00	ug/Kg		09/23/21 11:33	09/23/21 13:18	1

MB MB

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	70 - 130	09/23/21 11:33	09/23/21 13:18	1
Toluene-d8 (Surr)	98	70 - 130	09/23/21 11:33	09/23/21 13:18	1
1,2-Dichloroethane-d4 (Surr)	110	70 - 130	09/23/21 11:33	09/23/21 13:18	1
Dibromofluoromethane (Surr)	104	70 - 130	09/23/21 11:33	09/23/21 13:18	1

Lab Sample ID: LCS 620-4037/1-A

Matrix: Solid

Analysis Batch: 4029

Client Sam	ple ID: L	ab Contro	Sample

Prep Type: Total/NA Prep Batch: 4037

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	21.65		ug/Kg		108	70 - 130	
Ethylbenzene	20.0	22.95		ug/Kg		115	70 - 130	
Toluene	20.0	21.07		ug/Kg		105	70 - 130	
m,p-Xylene	40.0	45.42		ug/Kg		114	70 - 130	
o-Xylene	20.0	22.65		ug/Kg		113	70 - 130	
Naphthalene	20.0	21.30		ug/Kg		106	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	103		70 - 130	
Toluene-d8 (Surr)	101		70 - 130	
1,2-Dichloroethane-d4 (Surr)	110		70 - 130	
Dibromofluoromethane (Surr)	107		70 - 130	

Lab Sample ID: LCSD 620-4037/2-A

Matrix: Solid

Analysis Batch: 4029

Client Sample	ID: La	b Control	Sample	Dup
Chome Campio	.Du	D 001111101	Cumpic	Dup

Prep Type: Total/NA Prep Batch: 4037

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Limits Limit Analyte Unit %Rec **RPD** Benzene 20.0 20.26 ug/Kg 101 70 - 130 30 Ethylbenzene 20.0 21.39 ug/Kg 107 70 - 130 7 30 Toluene 20.0 ug/Kg 97 70 - 130 30 19.42

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-4037/2-A

Matrix: Solid

Analysis Batch: 4029

Client Sample	ID:	Lab	Contr	ol	Sample	Dup

Prep Type: Total/NA

Prep Batch: 4037

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
m,p-Xylene	40.0	41.42		ug/Kg		104	70 - 130	9	30	
o-Xylene	20.0	21.18		ug/Kg		106	70 - 130	7	30	
Naphthalene	20.0	20.38		ug/Kg		102	70 - 130	4	30	

40.0	41.42	ug/Kg	104	70 - 130	9	30
20.0	21.18	ug/Kg	106	70 - 130	7	30
20.0	20.38	ug/Kg	102	70 - 130	4	30

L	.CSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	109		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130

QC Association Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

GC/MS VOA

Client: AECOM

Pre Prep Batch: 3860

Project/Site: Unitil - Exeter, NH

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-1	West-3 (4-8')_091521	Total/NA	Solid	Frozen	_
				Preserve	
620-1161-2	West-2 (4-8')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-3	West-1 (4-8')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-4	Center-3 (20-24')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-5	Center-2 (20-24')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-6	Center-1 (20-24')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-7	East-3 (26-30')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-8	East-2 (26-30')_091521	Total/NA	Solid	Frozen	
				Preserve	
620-1161-9	East-1 (26-30')_091521	Total/NA	Solid	Frozen	
	<u>.</u> <u>.</u>		<u>.</u>	Preserve	
620-1161-10	Trip Blank	Total/NA	Solid	Frozen	
L				Preserve	

Analysis Batch: 3980

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-1	West-3 (4-8')_091521	Total/NA	Solid	8260C	3983
620-1161-2	West-2 (4-8')_091521	Total/NA	Solid	8260C	3983
620-1161-4	Center-3 (20-24')_091521	Total/NA	Solid	8260C	3983
620-1161-5	Center-2 (20-24')_091521	Total/NA	Solid	8260C	3983
620-1161-6	Center-1 (20-24')_091521	Total/NA	Solid	8260C	3983
620-1161-7	East-3 (26-30')_091521	Total/NA	Solid	8260C	3983
620-1161-8	East-2 (26-30')_091521	Total/NA	Solid	8260C	3983
620-1161-9	East-1 (26-30')_091521	Total/NA	Solid	8260C	3983
620-1161-10	Trip Blank	Total/NA	Solid	8260C	3983
MB 620-3983/3-A	Method Blank	Total/NA	Solid	8260C	3983
LCS 620-3983/1-A	Lab Control Sample	Total/NA	Solid	8260C	3983
LCSD 620-3983/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	3983

Prep Batch: 3983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-1	West-3 (4-8')_091521	Total/NA	Solid	5035	3860
620-1161-2	West-2 (4-8')_091521	Total/NA	Solid	5035	3860
620-1161-4	Center-3 (20-24')_091521	Total/NA	Solid	5035	3860
320-1161-5	Center-2 (20-24')_091521	Total/NA	Solid	5035	3860
620-1161-6	Center-1 (20-24')_091521	Total/NA	Solid	5035	3860
620-1161-7	East-3 (26-30')_091521	Total/NA	Solid	5035	3860
620-1161-8	East-2 (26-30')_091521	Total/NA	Solid	5035	3860
620-1161-9	East-1 (26-30')_091521	Total/NA	Solid	5035	3860
620-1161-10	Trip Blank	Total/NA	Solid	5035	3860
MB 620-3983/3-A	Method Blank	Total/NA	Solid	5035	
LCS 620-3983/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 620-3983/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 4029

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-3	West-1 (4-8')_091521	Total/NA	Solid	8260C	4037

QC Association Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

2

__

Project/Site: Unitil - Exeter, NH GC/MS VOA (Continued)

Analysis Batch: 4029 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method F	Prep Batch
MB 620-4037/3-A	Method Blank	Total/NA	Solid	8260C	4037
LCS 620-4037/1-A	Lab Control Sample	Total/NA	Solid	8260C	4037
LCSD 620-4037/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	4037

Prep Batch: 4037

Client: AECOM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-3	West-1 (4-8')_091521	Total/NA	Solid	5035	3860
MB 620-4037/3-A	Method Blank	Total/NA	Solid	5035	
LCS 620-4037/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 620-4037/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

General Chemistry

Analysis Batch: 3884

– Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
620-1161-1	West-3 (4-8')_091521	Total/NA	Solid	Moisture	
620-1161-2	West-2 (4-8')_091521	Total/NA	Solid	Moisture	
620-1161-3	West-1 (4-8')_091521	Total/NA	Solid	Moisture	
620-1161-4	Center-3 (20-24')_091521	Total/NA	Solid	Moisture	
620-1161-5	Center-2 (20-24')_091521	Total/NA	Solid	Moisture	
620-1161-6	Center-1 (20-24')_091521	Total/NA	Solid	Moisture	
620-1161-7	East-3 (26-30')_091521	Total/NA	Solid	Moisture	
620-1161-8	East-2 (26-30')_091521	Total/NA	Solid	Moisture	
620-1161-9	East-1 (26-30') 091521	Total/NA	Solid	Moisture	

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: West-3 (4-8') 091521

Date Collected: 09/15/21 08:30 Date Received: 09/16/21 14:05

> Batch Batch Dilution Batch Prepared

Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis Moisture 09/17/21 16:27 KFS ENE

Client Sample ID: West-3 (4-8') 091521

Date Collected: 09/15/21 08:30

Date Received: 09/16/21 14:05

Date Receive	ate Received: 09/16/21 14:05								
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE	
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE	
Total/NA	Analysis	8260C		1	3980	09/22/21 16:38	DDP	ENE	

Client Sample ID: West-2 (4-8')_091521

Date Collected: 09/15/21 09:00

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			3884	09/17/21 16:27	KFS	ENE

Client Sample ID: West-2 (4-8')_091521

Date Collected: 09/15/21 09:00

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 17:05	DDP	ENE

Client Sample ID: West-1 (4-8') 091521

Date Collected: 09/15/21 09:30

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	3884	09/17/21 16:27	KFS	ENE

Client Sample ID: West-1 (4-8') 091521

Analysis

8260C

Date Collected: 09/15/21 09:30

Date Received: 09/16/21 14:05

Total/NA

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			4037	09/23/21 11:33	MED	ENE

Lab Sample ID: 620-1161-1

Lab Sample ID: 620-1161-1

Lab Sample ID: 620-1161-2

Lab Sample ID: 620-1161-2

Lab Sample ID: 620-1161-3

Lab Sample ID: 620-1161-3

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 81.1

Percent Solids: 90.6

10

Eurofins Environment Testing New England

ENE

4029 09/23/21 13:44 DDP

Lab Sample ID: 620-1161-4

Lab Sample ID: 620-1161-5

Lab Sample ID: 620-1161-5

Lab Sample ID: 620-1161-6

Lab Sample ID: 620-1161-6

Job ID: 620-1161-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 73.3

10

Percent Solids: 73.8

Client: AECOM

Project/Site: Unitil - Exeter, NH

Client Sample ID: Center-3 (20-24') 091521

Date Collected: 09/15/21 10:00

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			3884	09/17/21 16:27	KFS	ENE

Date Collected: 09/15/21 10:00

Date Received: 09/16/21 14:05

Client Sample ID: Center-3 (20-24')_091521								Lab	Sample	ID: 620-11	61-4
Į	Total/NA	Analysis	Moisture		1	3884	09/17/21 16:27	KFS	ENE	•	
I	Prep Type	туре	Method	Run	ractor	Number	or Analyzeu	Analyst	Lab	_	

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 17:57	DDP	ENE

Client Sample ID: Center-2 (20-24')_091521

Date Collected: 09/15/21 10:30

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	3884	09/17/21 16:27	KFS	ENE

Client Sample ID: Center-2 (20-24')_091521

Date Collected: 09/15/21 10:30

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	00/22/21 18:24	DDP	ENE

Client Sample ID: Center-1 (20-24') 091521

Date Collected: 09/15/21 11:00

Date Received: 09/16/21 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1 -	3884	09/17/21 16:27	KFS	ENE

Client Sample ID: Center-1 (20-24')_091521

Date Collected: 09/15/21 Date Received: 09/16/21	Matrix: Solid Percent Solids: 73.9				
Batch	Batch	Dilution	Batch	Prepared	

١		Batch	Batch		Dilution	Batch	Prepared		
١	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
١	Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
١	Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Į	Total/NA	Analysis	8260C		1	3980	09/22/21 18:50	DDP	ENE

Job ID: 620-1161-1

Project/Site: Unitil - Exeter, NH

Client: AECOM

Client Sample ID: East-3 (26-30') 091521

Date Collected: 09/15/21 11:30 Date Received: 09/16/21 14:05 Lab Sample ID: 620-1161-7

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1 -	3884	09/17/21 16:27	KFS	ENE

Client Sample ID: East-3 (26-30') 091521

Date Collected: 09/15/21 11:30

Date Received: 09/16/21 14:05

Lab Sample ID: 620-1161-7

Matrix: Solid Percent Solids: 68.8

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 19:17	DDP	ENE

Client Sample ID: East-2 (26-30')_091521

Date Collected: 09/15/21 12:00

Date Received: 09/16/21 14:05

Lab Sample ID: 620-1161-8

Matrix: Solid

10

l		Batch	Batch		Dilution	Batch	Prepared		
l	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
L	Total/NA	Analysis	Moisture		1	3884	09/17/21 16:27	KFS	ENE

Client Sample ID: East-2 (26-30')_091521

Date Collected: 09/15/21 12:00

Date Received: 09/16/21 14:05

Lab Sample ID: 620-1161-8 **Matrix: Solid**

Lab Sample ID: 620-1161-9

Percent Solids: 69.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 19:43	DDP	ENE

Client Sample ID: East-1 (26-30') 091521

	Date Collected: 09/15/21 12 Date Received: 09/16/21 14		/-				•	Matrix: Solid
ſ	– Batch	Batch		Dilution	Batch	Prepared		

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 3884 09/17/21 16:27 KFS ENE Total/NA Moisture Analysis

Client Sample ID: East-1 (26-30')_091521

Date Collected: 09/15/21 12:30 Date Received: 09/16/21 14:05

Lab Sample ID: 620-1161-9 **Matrix: Solid**

Percent Solids: 70.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 20:10	DDP	ENE

Lab Chronicle

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client Sample ID: Trip Blank

Project/Site: Unitil - Exeter, NH

Date Received: 09/16/21 14:05

Date Collected: 09/15/21 00:00

Lab Sample ID: 620-1161-10

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Pre Prep	Frozen Preserve			3860	09/16/21 16:42	PN	ENE
Total/NA	Prep	5035			3983	09/22/21 09:58	MED	ENE
Total/NA	Analysis	8260C		1	3980	09/22/21 15:46	DDP	ENE

Laboratory References:

Client: AECOM

ENE = Eurofins Environment Testing New England, 646 Camp Ave, North Kingstown, RI 02852, TEL (413)789-9018

Accreditation/Certification Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Laboratory: Eurofins Environment Testing New England

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New Hampshire		rogram ELAP	Identification Number 2240	Expiration Date 08-03-22
The following analytes the agency does not do	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w
Analysis Method	Prep Method	Matrix	Analyte	
Moisture		Solid	Percent Solids	

9

4

6

8

10

11

13

14

15

Method Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM

Project/Site: Unitil - Exeter, NH

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	ENE
Moisture	Percent Moisture	EPA	ENE
5035	Closed System Purge and Trap	SW846	ENE
Frozen Preserve	Freezing Samples	None	ENE

Protocol References:

EPA = US Environmental Protection Agency

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ENE = Eurofins Environment Testing New England, 646 Camp Ave, North Kingstown, RI 02852, TEL (413)789-9018

Sample Summary

Exhibit 1 Schedule 4A

Job ID: 620-1161-1

Client: AECOM
Project/Site: Unitil - Exeter, NH

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
620-1161-1	West-3 (4-8')_091521	Solid	09/15/21 08:30	09/16/21 14:05
620-1161-2	West-2 (4-8')_091521	Solid	09/15/21 09:00	09/16/21 14:05
620-1161-3	West-1 (4-8')_091521	Solid	09/15/21 09:30	09/16/21 14:05
620-1161-4	Center-3 (20-24')_091521	Solid	09/15/21 10:00	09/16/21 14:05
620-1161-5	Center-2 (20-24')_091521	Solid	09/15/21 10:30	09/16/21 14:05
620-1161-6	Center-1 (20-24')_091521	Solid	09/15/21 11:00	09/16/21 14:05
620-1161-7	East-3 (26-30')_091521	Solid	09/15/21 11:30	09/16/21 14:05
620-1161-8	East-2 (26-30')_091521	Solid	09/15/21 12:00	09/16/21 14:05
620-1161-9	East-1 (26-30')_091521	Solid	09/15/21 12:30	09/16/21 14:05
620-1161-10	Trip Blank	Solid	09/15/21 00:00	09/16/21 14:05

	⇔ euro	Enviro	nment	Testing	СНА	IN "	OF	CU		620	0-1161 C	hain G	f Cust	ody			,	Rush TA All TATs Mm. 24	d TAT - 7 AT - Date s subject t -hr notific	ecial Handling: 7 to 10 business days E Needed to laboratory approval cation needed for rushes lafter 30 days unless otherwise instructed
	Telephone # Project Mgr	01824 DE CON 438-905-21 MARK MECAS	E		PO No.		-		A	Quote #						Project No. Site Name: Location Sampler(s)		OS3 ETE	69	GZ ,300 NY -UNITIC GAS State NN
		$1=Na_2S2O_3$ 2= HCl 3= I SO ₄ 9 =Deionized Water 10= I	. ,	HNO ₃ 5=NaOI 11=						-			'a - -	I	ist Pre	servative Coc	de below	/t		QA/QC Reporting/Nutest *** * additional aliantest may apply
-					 -			I		4 . 1			3,9]	tj		A 1514	<u> </u>			
Page 29 of 30	Lab ID:	SL-Sludge A-Indoor/A X2= G-Grab Sample ID: WEST-3 (4-8') - OF WEST-1 (4-8') - OF (ENTER-3 (20-24') ENTER-1 (20-24') ENTER-1 (20-34') ENTER-1 (20-34')	11521 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561 (1561	SG-Soil Gas		Type Type	So	3 # of voa Vials	# of Amber Glass	# of Clear Glass	# of Plastic		A BIEN	K NAPHTHUEME		Analysis				MA DEP MCP CAM Report? CT DPH RCP Report? Standard DQA* ASP A* NJ Full* Tier II* Other State-specific reporting standards.
2 2	Contraction of the Contraction o	quished by:		Received	by:			Dater			Time:		Temp	°C	_	EDD format:	AE	com	EQ	کان کی کی کان
9/23/202	0045	Ty		Just Just Just Just Just Just Just Just			9,	[[6] [[4]			1:30 4:05	e e	2.5 orecellon P + 1 corrected 3-9		Conditi	E-mail to on upon recei	pt:	Custody	Scals:	HAN @ AS CON CONE ABE @ AS CON CONE Provint: Initial Dirickon

Sample Shipping Address: 126 Myron Street • West Springfield, MA 01089 • 413-789-901
Lab Address: 646 Camp Ave • North Kingstown, RI 02852
www.EurofinsUS.com/Spectrum

Rev Jan 2020

Login Sample Receipt Checklist

Client: AECOM Job Number: 620-1161-1

Login Number: 1161 List Number: 1

Creator: Makhoul, Elie

List Source: Eurofins Environment Testing New England

oroator. makiroai, Elio		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Δ

COMPANY NAME

NORTHERN UTILITIES, INC.

ROCHESTER FORMER MGP SITE

LINE NO

SCHEDULE 4B

- 1. SITE LOCATION: Route 125 and Spaulding Turnpike, Rochester, NH
- 2. DATE SITE WAS FIRST INVESTIGATED AS A DISPOSAL SITE: The property owner of record reported environmental concerns in 1989.
- 3. SUMMARY OF MATERIAL DEVELOPMENTS AND INTERACTIONS WITH ENVIRONMENTAL AUTHORITIES (July 1, 2021 June 30, 2022):
 - Northern directed AECOM to continue providing environmental consulting services, including remediation design support and groundwater monitoring, for the former manufactured gas plant (MGP). AECOM conducted two sampling events and submitted an annual report to the New Hampshire Department of Environmental Services (NH DES) for review during the reporting period, which summarized the status of groundwater quality monitoring.
 - As required by the Rochester Water and Sewer Department, Northern conducted an annual inspection of the Site's backflow prevention device during the reporting time period. Furthermore, domestic water to the Site needed to be shut-off/turned-on because of the absence of a heated structure to prevent over-winter freezing.
 - The NH DES directed Northern to further investigate/delineate on-Site source materials for future remediation, as part of a separately-proposed regulator station installation. This investigation/delineation occurred alongside the station installation to minimize impact to the Site's soil and groundwater. Northern directed AECOM to submit the on-Site source materials investigation report in January 2022 (See Exhibit 1, Schedule 4B).
 - Northern directed AECOM to coordinate with Northern's New Hampshire Gas Operations, which installed a second, gas regulator station at the Site to ensure local gas supply reliability. Construction on the station was completed in October 2021. Although the station installation impacted portions of the Site, these activities were separate of the phytoremediation project. Northern directed AECOM to submit a summary report on soil management conducted during regulator station installation, which included minor impacts to the area covered by the GMP (See Exhibit 2, Schedule 4B).
 - Northern directed AECOM to prepare a remedial action plan (RAP) focused on the on-Site source materials to the NH DES. Furthermore, Northern directed AECOM to conduct an evaluation of the phytoremediation project's effectiveness of influencing on-Site groundwater flows. The NH DES directed Northern to conduct these activities in June 2022 (See Exhibit 3, Schedule 4B). Northern anticipates completion of these activities by the

first half of 2023.

4. NEW HAMPSHIRE SITE REMEDIATION PROGRAM PHASE:

The Rochester former Manufactured Gas Plant continues to implement the remediation design and monitor its progress via the groundwater monitoring program overseen by the NH DES.

5. NATURE AND SCOPE OF SITE CONTAMINATION:

Areas containing residual materials from the historic operation and decommissioning of the former MGP were discovered on the two-acre parcel. These residuals, which include coal tars and oils, were found in the soil at discrete locations and in the underlying groundwater. The remediation design focused on removing the affected soils to the extent practicable and enhancing the natural attenuation of any residuals in groundwater.

In addition, the remediation design included the removal of a tar well, which had been previously inaccessible because of propane storage equipment, the purchase of a former parcel from AmeriGas to facilitate the placement of notices of Activity and Use Restrictions (AURs) on the deeds, the demolition of an historic structure, the implementation of a multiphase phytoremediation program to mitigate contaminated groundwater flow, and a further assessment of the residuals through a groundwater monitoring program.

6. HISTORY AND CURRENT STATUS OF USE AND OWNERSHIP OF SITE:

The Rochester Gas Light Company owned and operated the former gas works from 1906 through 1911. The gas works was subsequently owned and operated by two, separate companies after the Rochester Gas Light Company – Strafford-York Gas Company in 1911 and Allied New Hampshire Gas Company in 1942. The plant ceased operating in 1957. Allied New Hampshire Gas Company was a predecessor of Northern.

However, Northern sold the property to Pyrofax Gas Corporation in 1971. Pyrofax sold the property to Petrolane Gas Service, LP in 1987. AmeriGas purchased Petrolane in 1994. The property was purchased by Northern from AmeriGas in 2004 as part of a settlement agreement. Northern also purchased the eastern portion of the site from Mr. Peter Field in 1990. This portion of the site is undeveloped and contains remnants of a railroad bed. Northern also owns land adjacent to the former gas works.

7. LISTING AND STATUS OF INSURANCE AND 3RD PARTY LAWSUITS AND SETTLEMENTS:

NAME OF SUIT: Field vs. Petrolane and Northern Utilities, and Petrolane vs. Northern Utilities

DATE FILED: 1988

STATUS (PENDING/SETTLED): Settled 1994

29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

SOURCE MATERIAL INVESTIGATION REPORT Petrolane/Northern Utilities, Inc. Site Route 125 Rochester, NH 03867

NHDES Site #: 198712002 Project Type: Hazardous Waste Project Project Number: 0432

Prepared For:
Unitil Service Corp.
6 Liberty Lane W
Hampton, NH 03842-1720
Phone Number (603) 379-3829
RP Contact Name: Thomas Murphy
RP Contact Email: murphyt@unitil.com

Prepared By: AECOM 250 Apollo Drive.

Chelmsford, MA 01824

Phone Number: (978) 905-2100 Contact Name: Ryan McCarthy

Contact Email: ryan.mccarthy@aecom.com

COLUMN CO

Digitally signed by Millard, Joshua DN: cn=Millard, Joshua, c=US, o=AECOM, ou=USCHL1, email=joshua.millard@aecom.com Date: 2022.01.21 17:03:58 -05'00'

Date of Report: January 21, 2022

Source Material Investigation Report

Petrolane/Northern Utilities, Inc. Site Route 125 Rochester, NH 03867

Unitil Service Corp.

Project number: 60139732

January 2022

Quality information

Prepared by

Reviewed by

Approved by

Colin Callahan Scientist Josh Millard, PG

C. Millard

Mark M. McCabe

Prepared for:

Unitil Service Corp. Hampton, NH

Prepared by:

AECOM

Chelmsford, MA, 01824 USA aecom.com

Table of Contents

1.	Introduct	tion	1-1
2.	Source A	Area Delineation Activities	2-′
	2.1 Fi	eld Sampling and Analysis	2-1
	2.1.1 Sc	pil Sampling	2-′
	2.1.2 Sa	ample Management	2-1
	2.2 Sa	ample Analysis	2-2
3.	Presenta	ation and Discussion of Results	3-1
	3.1 Sc	ource Area	3-1
	3.2 Sc	ource Material	3-2
4.	Conclusi	ions and Recommendations	4-1
5.	Reference	ces	5-′

Appendices

Appendix A Boring Logs Appendix B Laboratory Analytical Reports

Tables

Table 3-1 – Rochester Source Material Investigation Results Summary

Figures

Figure 1-1 Site Locus
Figure 2-1 Sample Locations
Figure 3-1 Potential Source Area
Figure 3-2 Transect Locations
Figure 3-2a Cross-Section A-A'
Figure 3-2b Cross-Section B-B'
Figure 3-2c Cross-Section C-C'
Figure 3-2d Cross-Section D-D'
Figure 3-2e Cross-Section E-E'
Figure 3-2f Cross-Section F-F'
Figure 3-2g Cross-Section G-G'
Figure 3-3a Significant Impacts Elevation 175-170 ft.
Figure 3-3b Significant Impacts Elevation 170-165 ft.
Figure 3-3c Significant Impacts Elevation 165-160 ft.
Figure 3-3d Significant Impacts Elevation 160-155 ft.
Figure 4-1 Principal Source Material and Source Material Affecting Monitoring Locations
Figure 4-2 Principal Source Material Area
Figure 4-3 Secondary Source Material Areas

1. Introduction

The former Rochester Manufactured Gas Plant (MGP) site (Site) is located at the intersection of Route 125 and the Spaulding Turnpike in Rochester, New Hampshire. The Site is bounded by Axe Handle Brook to the north, the Cocheco River to the east, and roadways on the west and south (Figure 1-1). The MGP facility operated in the western portion of the Site from 1903 through 1957.

A Source Removal Action was conducted at the Site during the period of September 1999 to December 1999. The source removal activities focused on those areas of the Site where there was evidence of source material within the practical depth of excavation, i.e. two feet below the depth of the water table (Figure 1-2). During the program, 19,500 tons of impacted soil was excavated from the Site (RETEC, 2001). The program was designed to address approximately 95% of the source material identified in the Phase II Site Investigation Report (HLA, 1999).

An additional source removal action was conducted in the Former Tar Well Area (Figure 1-2) during the period of January to April 2004 to address source material that had previously been inaccessible due to the presence of infrastructure for the propane distribution system. As in the previous source removal action, the practical depth of excavation was established to be two feet below the water table. During the program, the top of the tar well was uncovered and investigated. The circular structure was measured with a diameter of 19 feet and a depth of 7 feet (10 ft. bgs). The contents of the structure (i.e., approximately 386 tons of impacted soil, 7,303 gallons of benzene-impacted wastewater, 9,439 gallons of emulsion, and approximately 14 tons of coal tar and debris) were removed and managed off-Site at permitted facilities. Subsequently, the walls of the structure were cleaned, the structure was closed using flowable fill, and the excavation was backfilled (RETEC, 2004a). On December 22, 2004, NHDES issued a Certificate of Completion for the remedial actions implemented at the Site.

The Groundwater Management Permit (GWP) for the Site was renewed by the New Hampshire Department of Environmental Services (NHDES) on July 2, 2018 (GWP-198712002-R-006). Under the current GWP, water quality monitoring events are performed in November of each year, and biennial Groundwater Quality Summary Reports are submitted in January of every even numbered year.

In July of 2018, the NHDES requested that Unitil review the results from the groundwater monitoring program and evaluate options for improving the degradation rate of MGP constituents. Unitil's review demonstrated the following:

- The concentrations of the principal MGP constituents were stable, but at a level that is greater than NHDES criteria for site closure;
- The dissolved-phase concentrations at the Site would not affect the ambient water quality of the Cocheco River: and
- There is no risk from the current and future use of the Site.

This report summarizes the findings from an investigation designed to identify the source of the remaining dissolved-phase impacts as an initial step in evaluating future remedial actions. It is organized as follows: Section 2 summarizes the source area investigation activities completed; Section 3 presents a discussion of the results from the investigation; Section 4 presents conclusions from the investigation and recommendation for future remedial activities; and Section 5 lists the references used in the preparation of this document. The appendices present the boring logs and analytical reports from the investigation.

Unitil Service Corp. **AECOM**

2. Source Area Delineation Activities

The purpose of the field investigation was to identify the remaining source area for MGP impacts that are likely to affect groundwater quality. The selection of the sampling locations was based on the following criteria:

- Areas that are topographically and hydraulically downgradient of previously identified source areas; and
- Areas that are accessible, i.e., areas that can be reached using a pathway through the existing
 tree stands for a direct push technology (DPT) rig, and where sampling would not be impeded
 by the former railroad abutment.

The following discussion provides a summary of the sampling and analytical activities conducted as part of the investigation of the source area.

2.1 Field Sampling and Analysis

The investigation was conducted in two distinct efforts; one effort from June 22 to July 2, 2020 to collect soil samples from thirteen (13) investigation locations (GP-701 through GP-713) across four transects (A, B, C, & D), and one effort from December 3 to December 4, 2020 to collect soil samples from eight (8) investigation locations (GP-901 through GP-908) to further delineate impacts along the Axe Handle Brook as shown on Figure 2-1.

2.1.1 Soil Sampling

Prior to ground break, the investigation area was defined, and the utility lines were marked. Soil borings were then installed at each of the locations to a maximum depth of 30 feet below ground surface (ft. bgs) using a track mounted DPT rig. Soil boring logs are included in Appendix A. They were prepared to document depths, physical characteristics, and visual/olfactory observations during soil boring installation.

As borings were advanced, soil cores from the DPT rig were screened for the presence of volatile organics using a photoionization detector (PID) following head space screening procedures, and the soils were described for content and the presence of visual and/or olfactory impacts. Samples were collected from the two foot interval where the highest PID readings were observed, and/or the two foot interval with the most visibly impacted soils. If no impacts were observed, samples were collected from the saturated zone at an interval consistent with where tar/residuals were observed elsewhere on the Site.

After boring installation, logging, and sample collection, the open boreholes were filled with the soil cuttings in the order they came out to approximate their original vertical location in the borehole. All soil sampling equipment was decontaminated between borings and following completion of the work. Soil boring location coordinates were collected using a hand-held GPS receiver.

2.1.2 Sample Management

All analytical samples were collected using the appropriate container and preservative specified by the selected analytical laboratory. Sample handling, packaging, chain-of-custody procedures, and shipping were performed in accordance with the procedures as presented below.

Analytical samples were designated using the sample source location or an acronym of the sample type, followed by the depth interval from which the sample was collected, followed by the date in which the sample was collected. For example, a soil sample collected at a depth of 8-10 ft bgs from Geoprobe soil boring GP-106 on July 15, 2020, would be designated GP-106(8-10)071520.

All samples were securely packed in the shipping container to protect the sample containers from breakage. Ice was included in the shipping container to maintain a sample temperature at or below 4°C.

All analytical samples were logged on a chain-of-custody form, which was enclosed in the sample shipping container along with the appropriate analytical samples. The chain-of-custody form designated any transfer of custody of the sample shipping container and the laboratory courier method of shipment.

2.2 **Sample Analysis**

The collected samples were analyzed by Eurofins USA, a Unitil-approved contract laboratory, for benzene and naphthalene analysis via Method SW-846 8260b. These constituents are traditionally associated with residual material from MGP processes, and they were chosen to identify potential source areas that may affect groundwater quality. Copies of the analytical reports are provided in Appendix B.

Additionally, impacted soils were collected in 5-gallon buckets in anticipation of delivery to a Unitilapproved contract laboratory for treatability testing for in-situ chemical oxidation. These soils will be analyzed at a later date as agreed upon by Unitil.

3. Presentation and Discussion of Results

Field observations from the two sampling events and the results from the analysis of soil samples are summarized in Table 3-1. As indicated, oil like material (OLM), indicative of non-aqueous phase liquid (NAPL) from the MGP process, was observed in the saturated zone at the majority of locations. Associated concentrations of naphthalene in soil samples ranged from 0.008 milligrams per kilograms (mg/Kg) to 1,700 mg/Kg. Benzene was not detected above the laboratories respective reporting limit at any location. The following discussion relates to the delineation of the remaining source area, as well as defining the principal source material believed to be responsible for the current levels of constituent concentrations in groundwater.

3.1 Source Area

Figure 3-1 illustrates the locations where NAPL and/or elevated concentrations of the selected MGP constituents were observed. Note that the figure illustrates the presence of NAPL/elevated constituent levels regardless of their depth. As illustrated, impacts were observed in the saturated zone at locations beneath the prior excavation area and in adjacent areas that extend to the edge of Axe Handle Brook and the Cocheco River. A review of the prior site documents provides some context for these observations:

- Prior excavation area The Remedial Action Plan for the 2000 remediation project (ReTec, 1999) anticipated that residual impacts in the lower depths of the saturated zone would remain in place after the remediation. It was believed that, since these impacts comprised less than 5 percent of the total source material, the significant cost of additional dewatering to support their excavation was not warranted.
- Areas extending to Axe Handling Brook and the Cocheco River A review of the Remedial Investigation Report (HLA, 1999) demonstrates that samples were not collected from these areas, likely due to the steep slopes that existed on the heavily wooded embankments.

Additional detail for the observed NAPL impacts is provided in the cross-sections A-A' through G-G' (Figures 3-2 and 3-2a through 3-2g). Note that the illustrations for GP-701 do not include the impact observations for elevations below 11.4 ft. since a review of the boring log suggests that they likely are an artifact of sampling. NAPL was observed in the bottom 2.4 feet of a distinct gravel layer on top of a confining clay layer that extended from 11.4 ft bgs to the end of the boring at 30 ft bgs. Observations of NAPL in loose sand from 15-20 ft bgs and from 25-30 ft bgs are believed to be the result of slough materials accumulating in the bore hole prior to advancing the Macrocore through those intervals. The effect is evidenced by the notation of "smearing "of OLM along the outside of the clay in the boring log, with no indication of impact within the matrix itself.

As illustrated, the most significant quantities of NAPL were observed beneath the prior excavation area at locations GP-712 (3.3 ft. thickness) in a silt/sand layer and GP-708 (9.9 feet thickness)/ GP-709 (6.8 feet thickness) in a lower gravel layer. The frequency and thickness of impacts are observed to decrease at locations towards Axe Handle Brook and the Cocheco River. Generally, impacts were observed at deepening intervals with distance from the prior excavation area.

The NAPL appears to be generally present in a residual state, i.e., not mobile in the environment. Although NAPL was observed on the bedrock surface at two locations, GP-901 (0.8 feet thickness) and GP-902 (2.5 feet thickness), the surface appears to slope inward toward the Site, i.e. away from Axe Handle Brook, with no other observation of NAPL on the bedrock surface. There have not been any observations of NAPL in Site monitoring wells, or sheen on the Cocheco River/ Axe Handle Brook.

3.2 Source Material

The results for the most significant impacts, i.e. NAPL thickness > 1 foot and/or naphthalene concentration > 100 mg/Kg, are illustrated by depth in Figures 3-3a through 3-3d, the principal findings include the following:

- 175-170 feet MSL (Mean Sea Level) (Figure 3-3a) Impacts were observed at three locations with NAPL thickness from 1.4 to 2.1 feet. Two samples were analyzed for naphthalene in this horizon with concentrations from 118 to 650 mg/Kg.
- 170-165 feet MSL (Figure 3-3b) Impacts were observed at seven locations with NAPL thicknesses from 2.5 to 5 feet. Six samples were analyzed for naphthalene in this horizon with concentrations from 272 to 1,500 mg/Kg.
- 165 -160 feet MSL (Figure 3-3c) Impacts were observed at five locations with NAPL thicknesses from 1-4.6 feet. Five samples were analyzed for naphthalene in this horizon with concentrations from 163 to 1,700 mg/Kg.
- 160 -155 feet MSL (Figure 3-3d) Impacts were observed at two locations, NAPL was observed at a single location beneath the prior remediation area at a thickness of 1 foot. Naphthalene was detected at this location downgradient of the prior excavation area at a concentration of 200 mg/Kg.
- Locations B-2 (NAPL 168-162 feet MSL) and B-3 (NAPL 169-153 feet MSL)
- Locations MW403D (NAPL 165 -155 feet MSL)

These significant impacts provide the most likely source of dissolved-phase impacts. As illustrated in Figures 3-3b and 3-3c, the greatest concentration of source material is located beneath the former excavation area at elevations of 170 to 160 feet MSL. NAPL at two locations (GP-708 and GP-709) in this area were observed throughout the 170-165 foot intervals at both borings. The average naphthalene concentrations at these locations was > 1,000 mg/Kg. Limited impacts were observed in this area at 160-155 feet MSL (GP-702), as illustrated in Figure 3-3d.

Conclusions and Recommendations 4.

The results from the investigation indicate that the remaining MGP impacts are largely associated with media located below the practical depth of excavation of the prior remediation area. The results from the current investigation were combined with Phase II data from the area beneath the prior excavation area to better delineate the extent of these impacts (Figure 4-1). As illustrated, these impacts are located within an 11,000 square foot area at elevations of 170 to 160 ft MSL. (approximately 12 to 22 ft bgs). The location of these impacts is proximate to MW-03S and MW04S and is consistent with their screen intervals. These findings suggest that the remaining impacts beneath the prior excavation area are the principal source material affecting ground water quality at these locations.

The review of the results presented in the Phase II Report indicate that there are additional areas of source material that are proximate to MW-02D and MW-03S that are likely contributing to the current levels of dissolved-phase impact at these locations:

- MW-02D Locations B-2 (NAPL 168-162 feet MSL) and B-3 (NAPL 169-153 feet MSL)
- MW-03S Locations MW403D (NAPL 165 -155 feet MSL)

The findings from the program are appropriate to provide the following recommendations:

- The bulk samples of impacted media that were collected form highly impacted locations during the investigation should be used to conduct treatability testing.
- The results from the treatability testing should be used to support the development of a Remedial Action Plan (RAP) that evaluates appropriate remedies to address the remaining source material. Principal options should include excavation, solidification and chemical oxidation. In developing the RAP, Unitil will consider the following:
 - The prior remedial action was appropriate to address the potential exposure pathways at the Site. There is no risk from the exposure to MGP impacts in soil; groundwater is not used and has been proven to not impact surface water quality.
 - The nature of impacts at former MGP sites and applicable remedial actions can provide for improving groundwater conditions, but rarely achieve standards that are consistent with ambient water quality standards. Institutional controls are routinely required to support site closure.

As a result, the RAP will identify a remedy that will achieve a reasonable balance between remedial cost and environmental benefit.

5. References

HLA, 1999. Phase II and IIA Site Investigation Report, Former Rochester MGP Site, Rochester, New Hampshire. February 1999.

RETEC, 2001. Completion Report, Former Manufactured Gas Plant, Source Removal Action, Rochester, New Hampshire. April 2001.

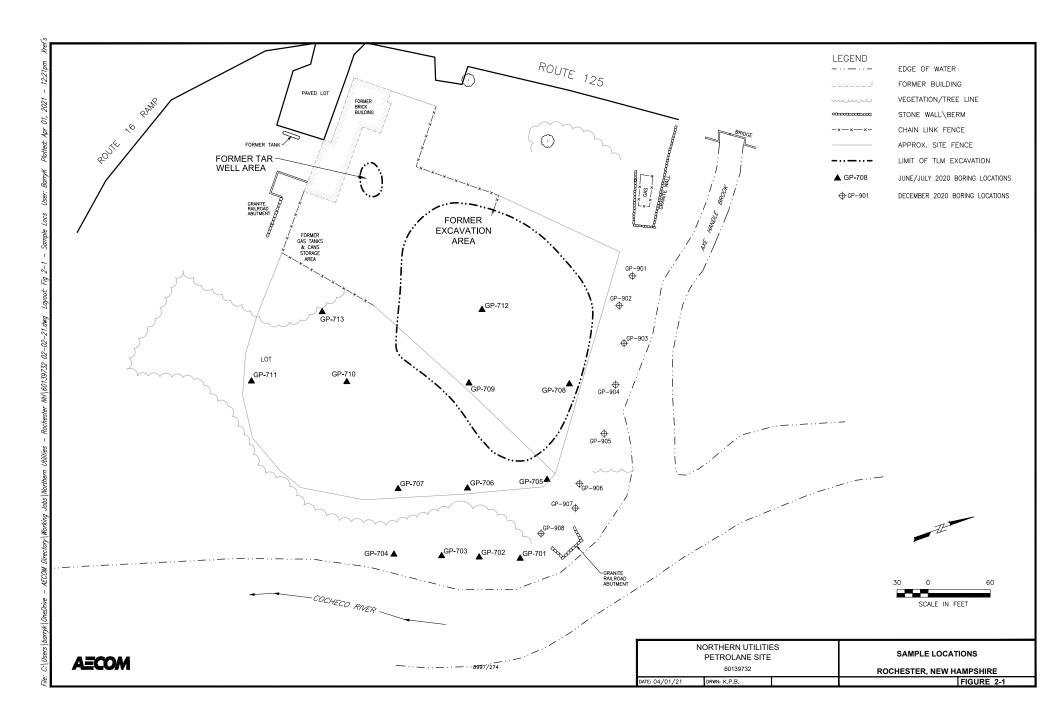
RETEC, 2004a. Completion Report Addendum Source Removal Action, Former Manufactured Gas Plant, Rochester, New Hampshire. June 2004.

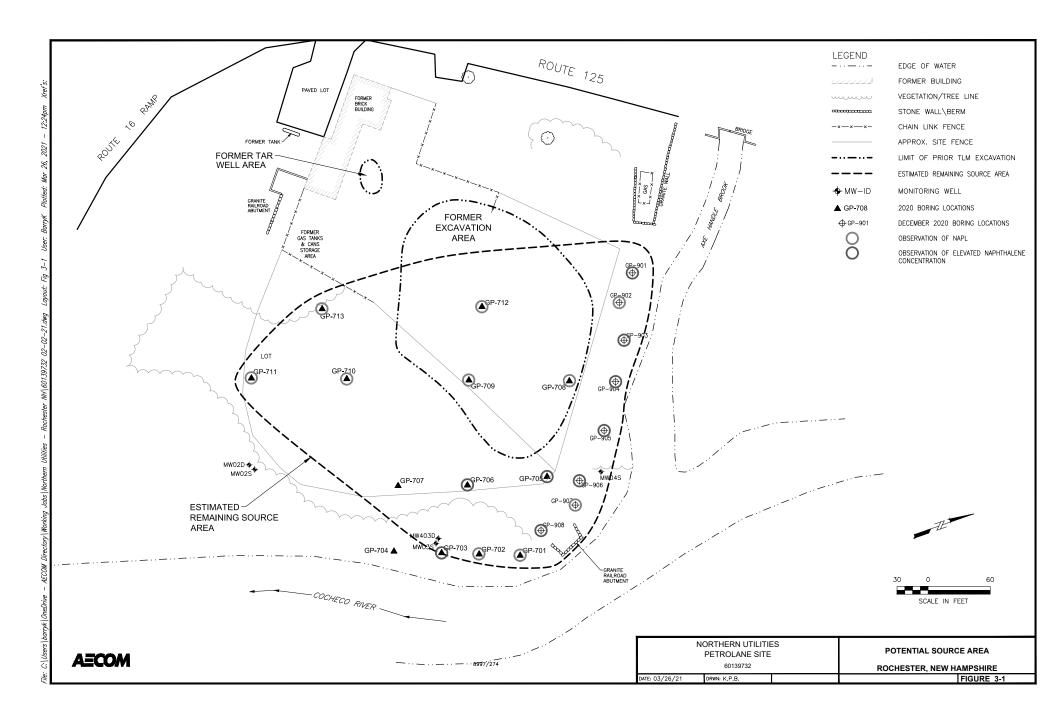
AECOM, 2019. 2018 and 2019 Biennial Water Quality Report and November 2019 Water Monitoring Data Submittal, Petrolane/Northern Utilities, Inc. site, Route 125, Rochester NH. January 2020.

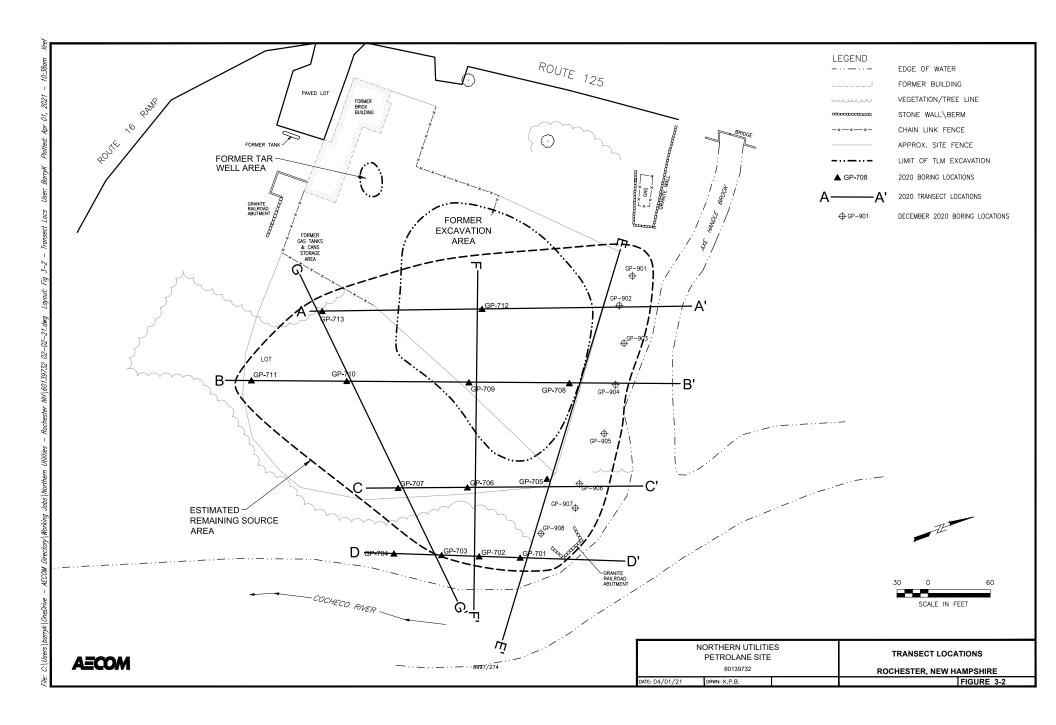
AECOM Unitil Service Corp.

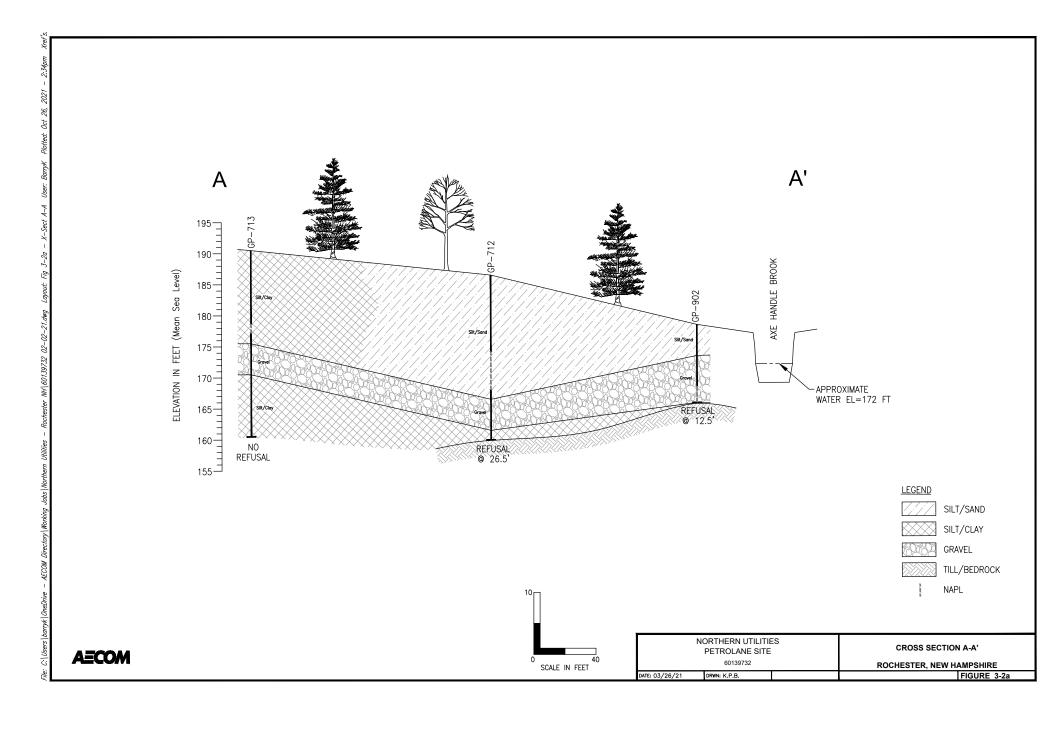
Table

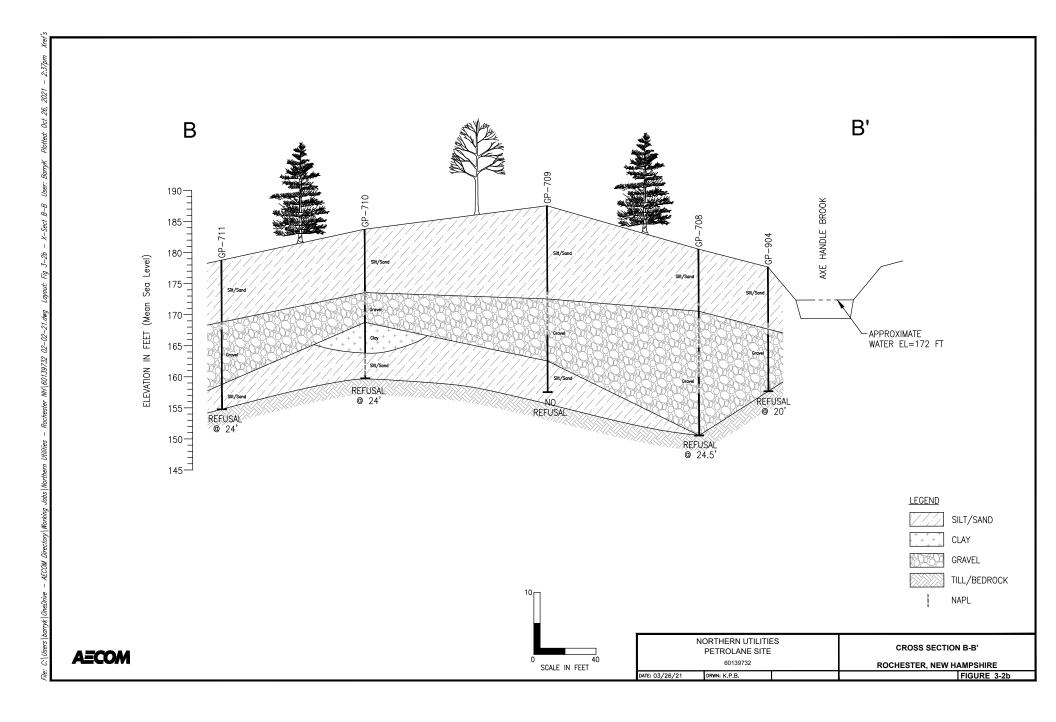
Table 3-1 Source Material Investigation Results Summary

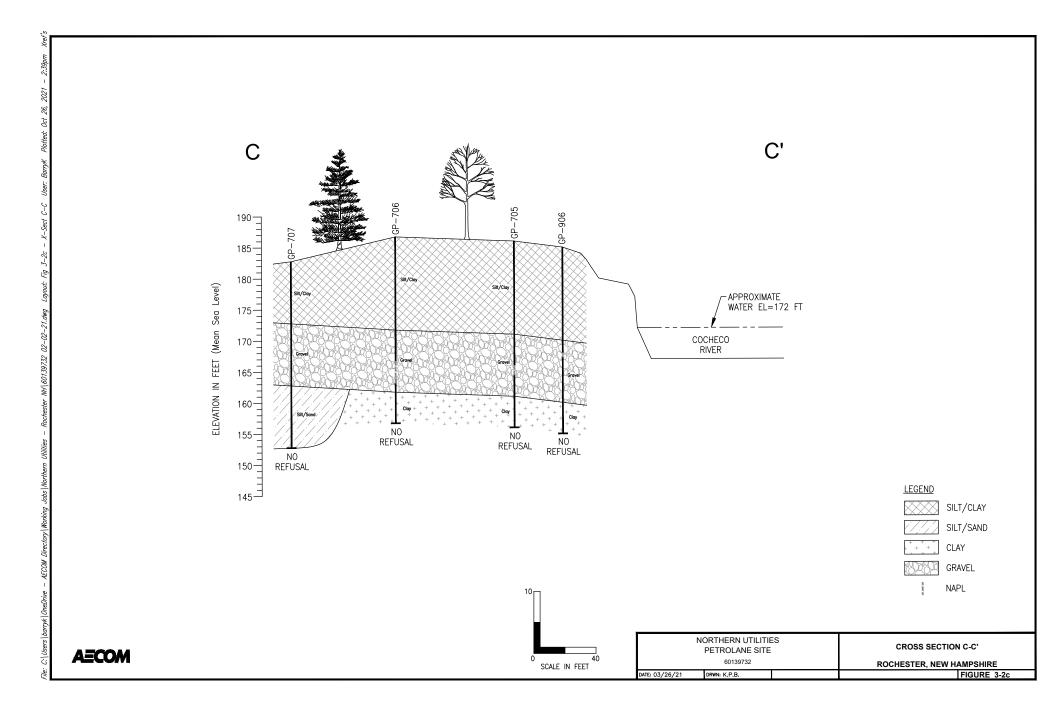

Location/	Boring Interval		Constituent Co	Constituent Concentration (mg/Kg)		
Surface Elevation (ft.) 1	(ft. bgs)	OLM Thickness (ft.)	Sampling Interval (ft.)	Naphthalene	Benzene	
GP-701 (184 ft)	5-10	9-9.8				
,			9-11	650	<31	
	10-15	10-11.4				
	15-20	15-20				
	20-25	20-22				
	25-30	25-28.7				
GP-702 (177 ft.)	5-10	8.3-9.4				
	10-15		10-12	38	<1.8	
	15-20		16-18	2.1	< 0.05	
GP-703 (178 ft.)	20-25		22-24	200	<8.5	
GP-704 (179 ft.)	25-30		25.2-27.2	0.008	< 0.003	
GP-705 (185 ft.)	20-25		20-22	91	<3.1	
GP-706 (186 ft.)	20-25		21.5-23.5	1,700	<41	
GP-707 (182.5 ft.)	25-30		26.8-28.8	0.08	< 0.003	
GP-708 (180 ft.)	5-10	8.8-9.1				
	10-15	11.1-13.9	11.9-13.9	1,500	<41	
	15-20	15-15.9				
		16.4-19.6				
	20-24.5	20-20.5				
		21.7-23.1	21.7-23.7	1,600	<36	
GP-709 (186.5 ft.)	15-20	16.5-17.8				
	20-25	20-21				
			20-22	540	<1.8	
		21.5-23.3				
			22-24	670	<2.1	
	25-30	25-26.2				
GP-710 (182.5 ft.)	10-15	10-12.1				
	20-25	20-23.2	20-22	750	<19	
GP-711 (178 ft.)	10-15	10-11.1	10-12	60	<2.1	
GP-712 (186 ft.)	10-15	12.2-12.7				
	15-20	15-18.3				
	20-25		20-22	1,100	<37	
GP-713 (190.5 ft.)	15-20	16.3-17.7	16-18	4	<0.8	
GP-901 (180 ft.)	5-10	5-5.8	4-6	21.4	<0.8	
GP-902 (180 ft.)	10-15	10-12.5	10-12	316	<0.7	
GP-903 (178 ft.)	5-10	6.1-7.9	6.5-8.5	351	<0.9	
GP-904 (176.5)	5-10	9-9.5				
			9-11	272	<0.9	
	10-15	10-10.8				
GP-905 (177 ft.)	5-10		5-7	118	<2.26	
GP-906 (185 ft.)	15-20	17-17.7	16-18	64.4	<0.9	
GP-907 (184 ft.)	20-25	22-23	21.5-23.5	164	<0.9	
GP-908 (183 ft.)	15-20	18.3-18.6	17-19	364	<0.7	
	20-25	20.6-20.9				

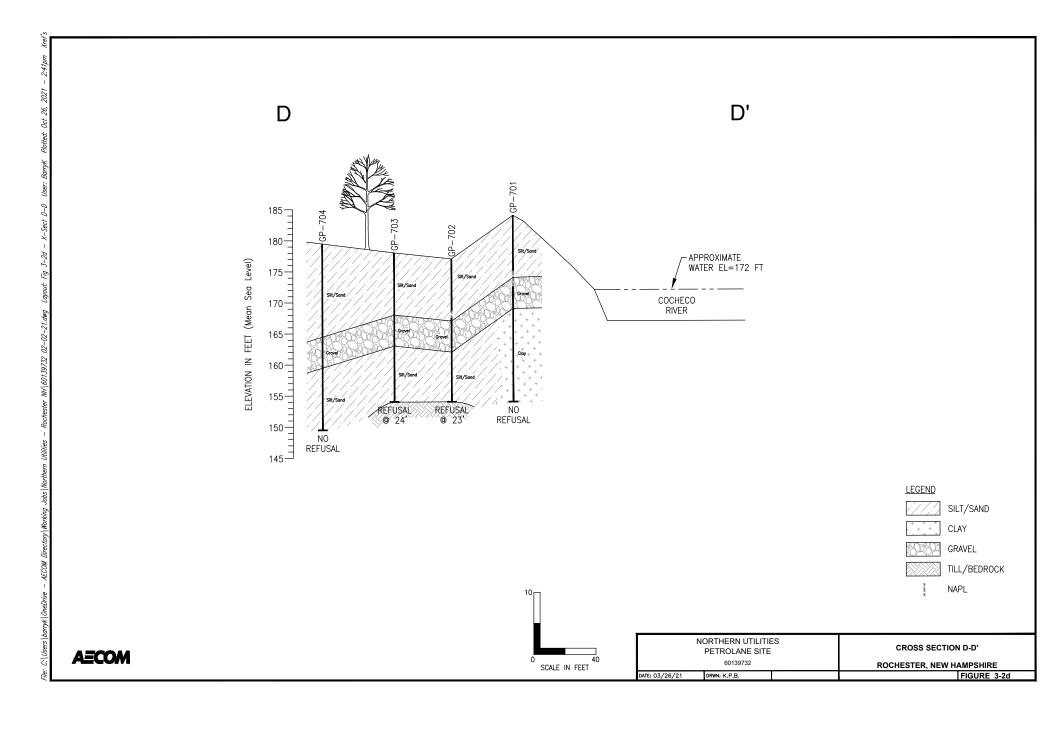

Notes:

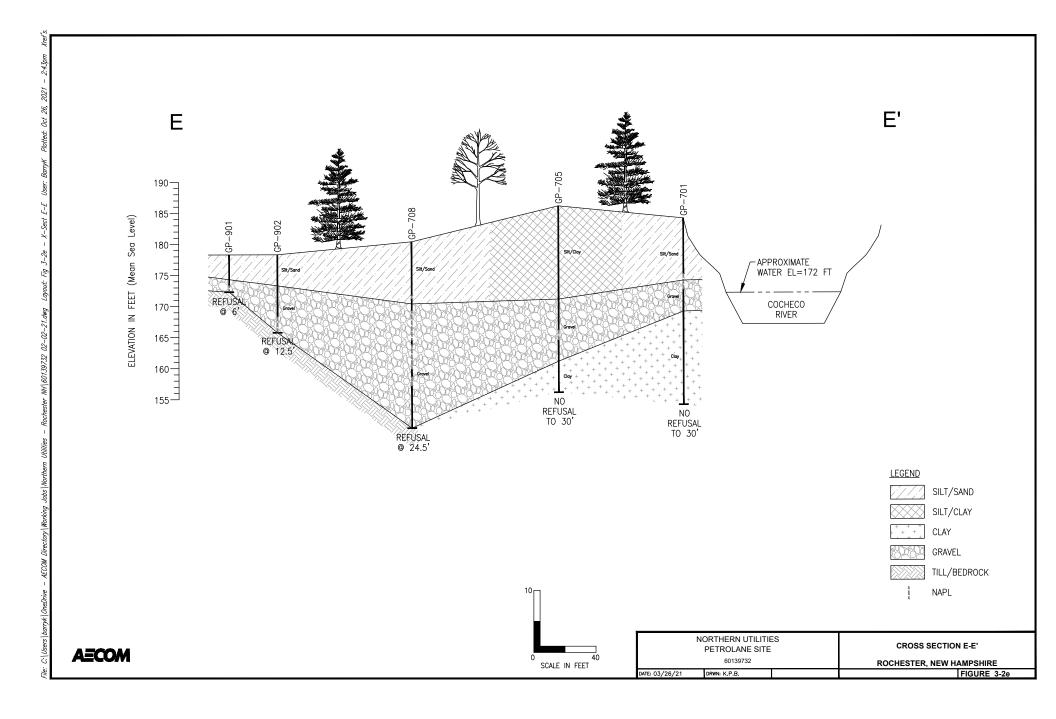

1 Surface Elevation (MSL)

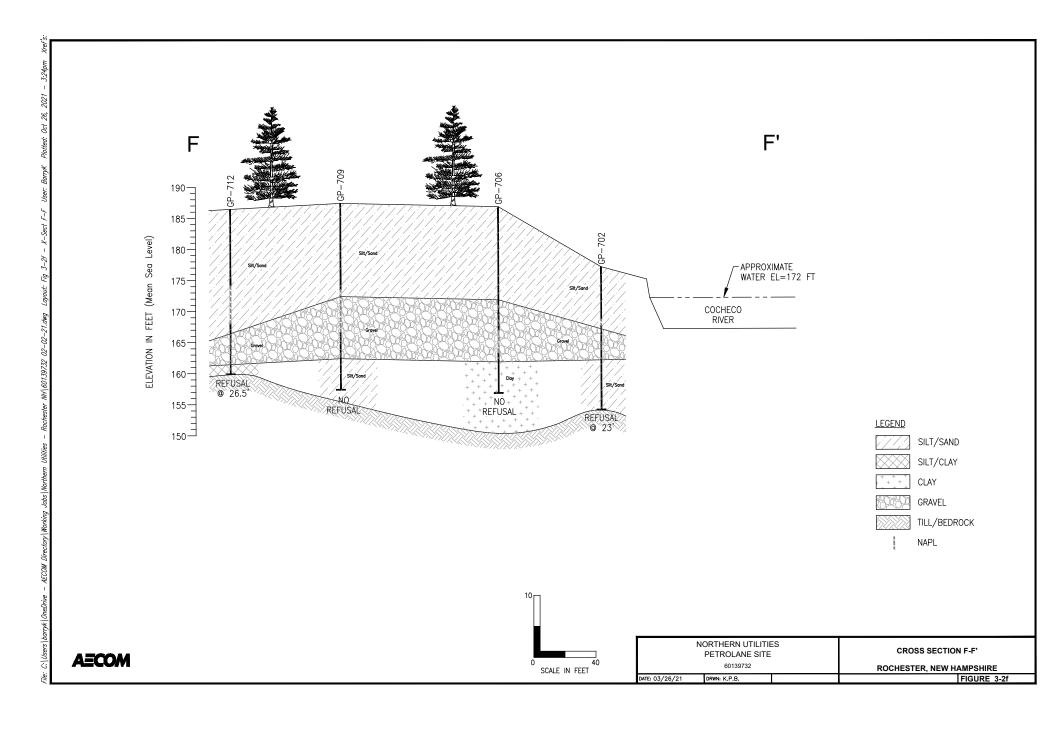

Itlalics
OLM observations believed to be a sampling artifact
OLM thickness greater than one foot
--- No OLM Observed or No Sample Collected

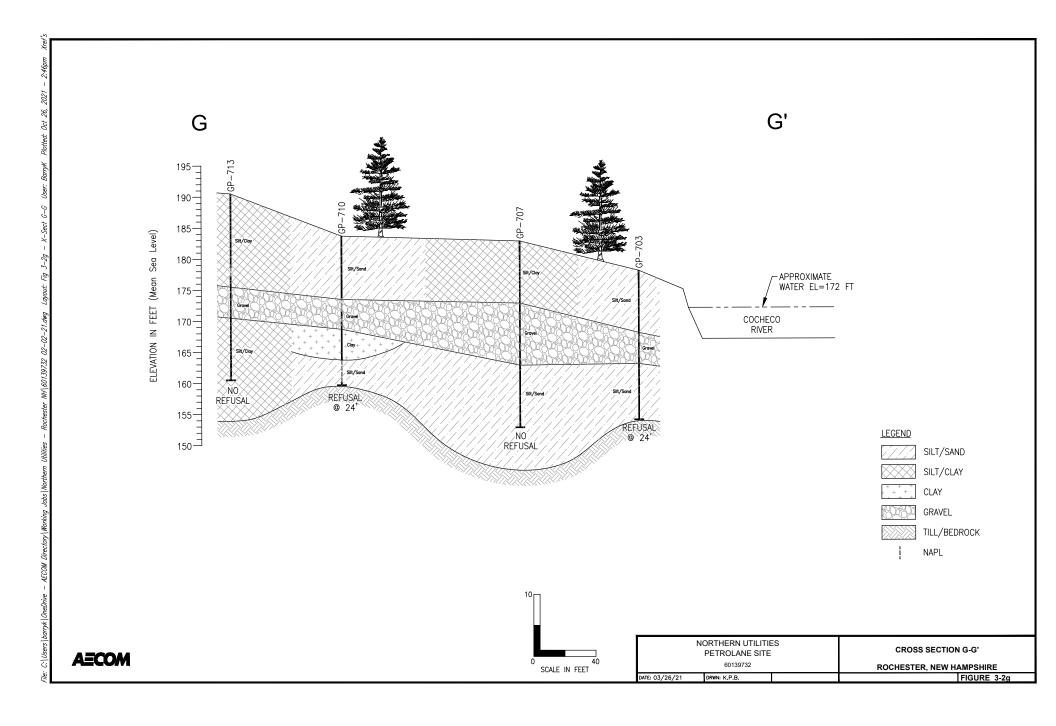

Figures

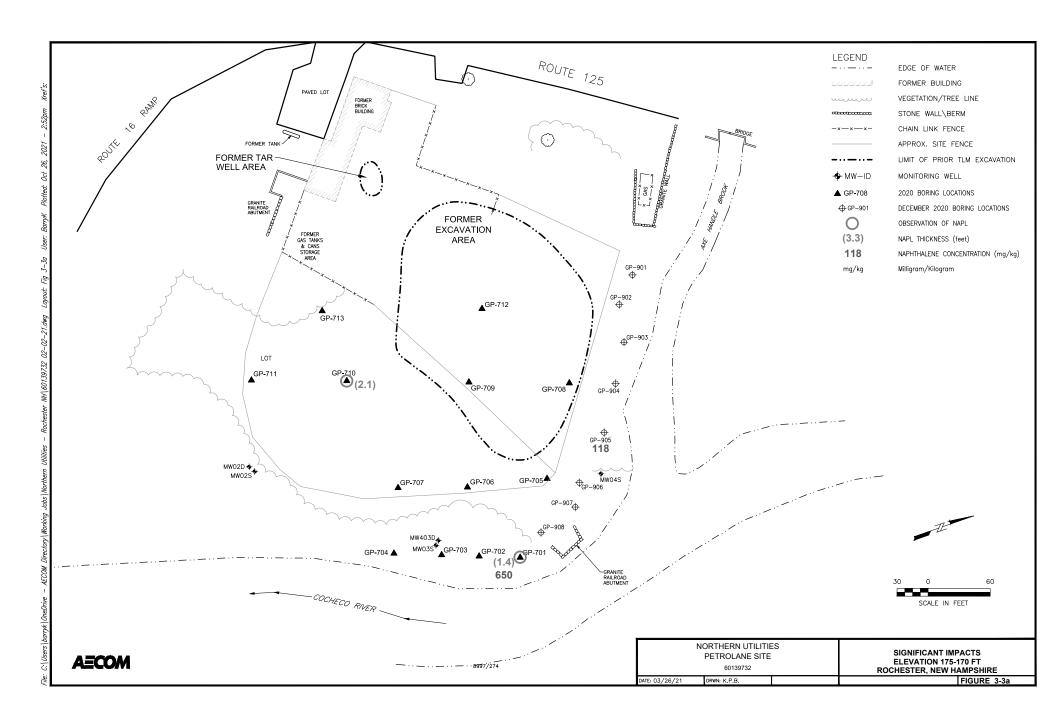


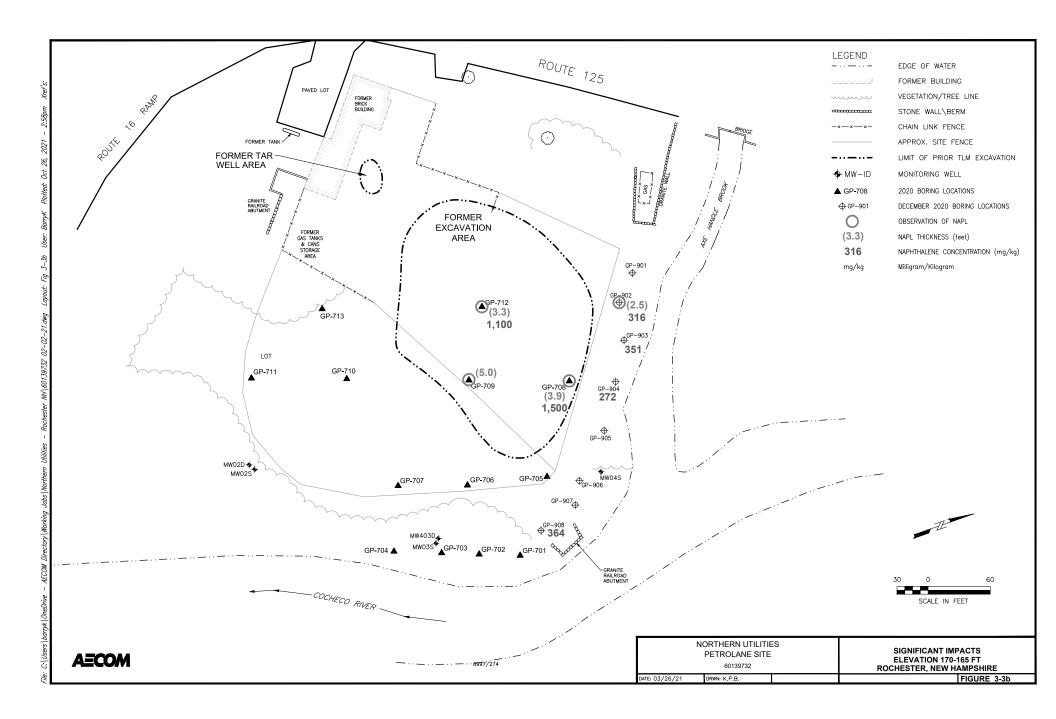


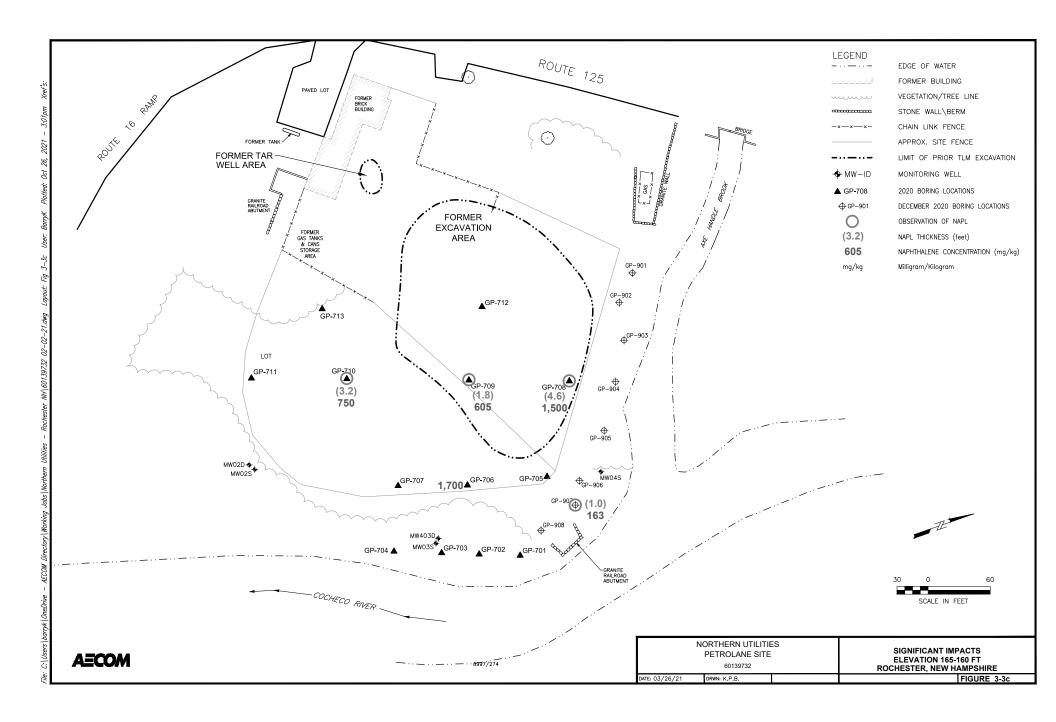


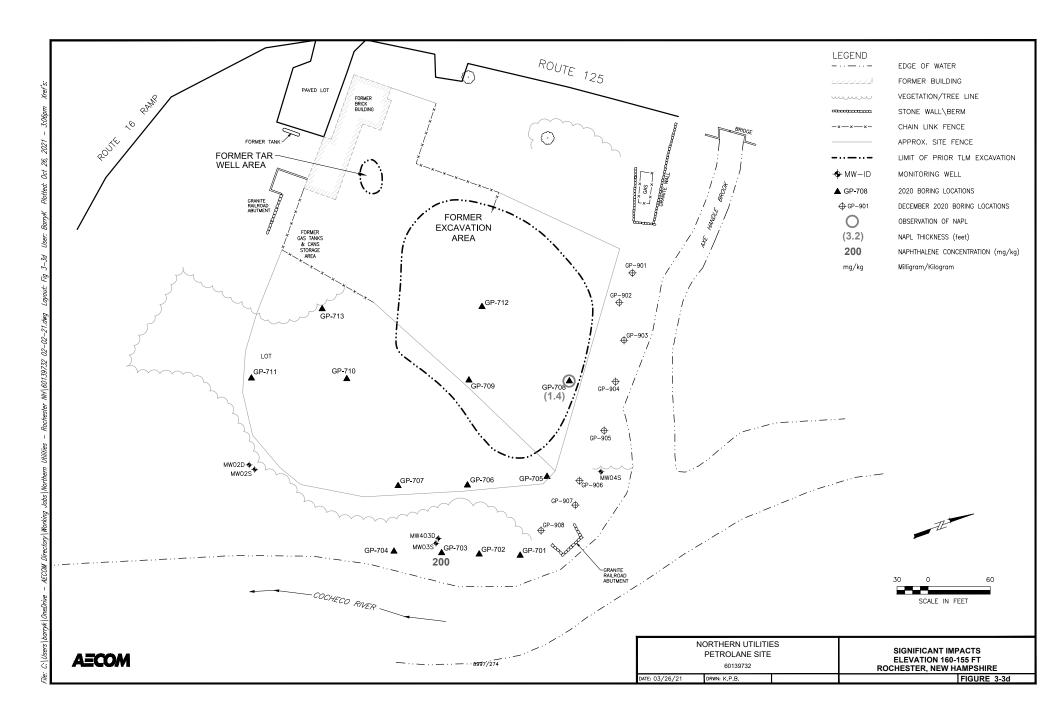


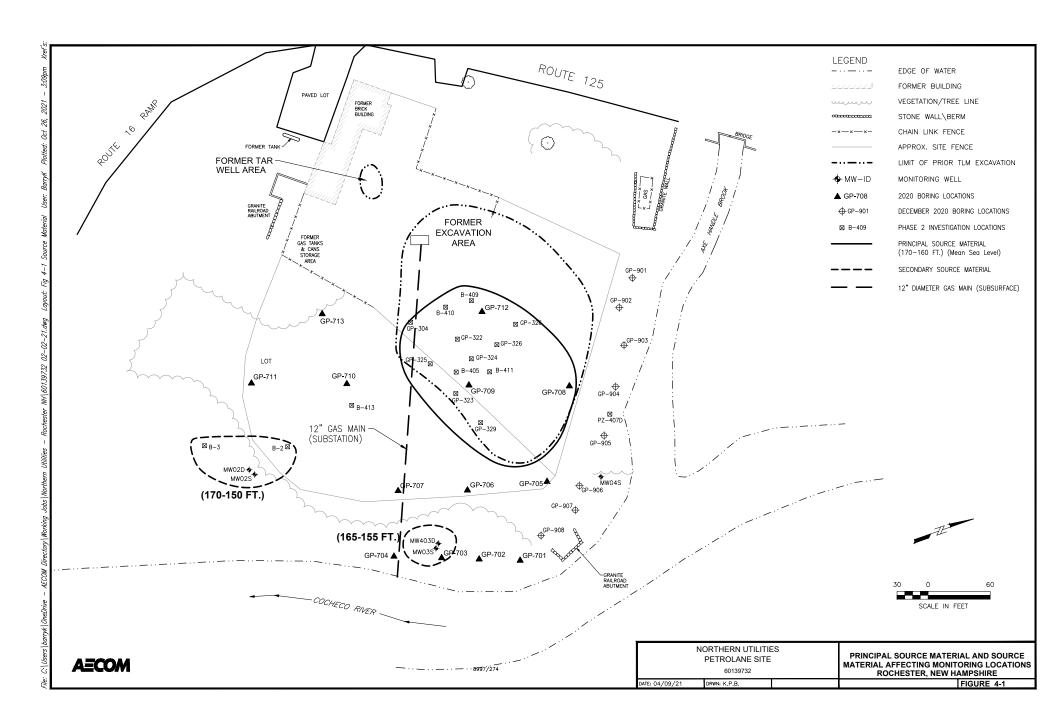












AECOM

NORTHERN UTILITIES
PETROLANE SITE
60139732

DATE: 04/09/21

DRWN: K.P.B.

PRINCIPAL SOURCE MATERIAL AREA
ROCHESTER, NEW HAMPSHIRE
FIGURE 4-2

LOCATION OF MW-02

AECOM

SECONDARY SOURCE MATERIAL AREAS	NORTHERN UTILITIES PETROLANE SITE			
ROCHESTER, NEW HAMPSHIRE	60139732			
FIGURE 4-3	DRWN: K.P.B.	TE: 04/14/21		

Appendix A Boring Logs

AEC	MO.

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office	Page	1	of	1

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flushstick UpHeight: 2'
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 7/2/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 7/2/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
Logged By: C. Howe	Total Depth of Boring (bgs): 30'	No well installed.

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	
0-5	3.3/5	0.7-3.3	2-5	SILT, CLAY and SAND: 0 to 0.7 ft bgs: topsoil 0.7 to 3.3 ft: dark brown layers of SILT, greenish gray CLAY, light and reddish brown SILTY fine SAND
5-10	4.8/5	5-7.6, 8.1-9, 9-9.8	2, <5, 90	SILT, SAND and GRAVEL: 5.0 to 7.6: dark brown SILTY fine SAND and SILT 7.6 ft to 8.1 feet: dark gray fine to medium SAND 8.1 to 9.0 ft: SAND and GRAVEL (alluvium) 9.0 to 9.8 ft: alluvium with OLM in voids
10-15	4.8/5	10-11.4	110	SAND, GRAVEL and CLAY: 10.0 to 11.4 ft: alluvium with OLM in 11.4 to 14.8 ft: firm CLAY, grading from light brown to greenish gray at 12.3 ft bgs
15-20	1.5/5	15-16.5	100	SAND: poor recovery, very wet SAND with OLM. Sample did not remain intact in sample tube
20-25	4.3/5	20-22, 22- 24.3	40, <1	CLAY: 20.0 to 22.0 ft: difficult sampling. Looks like alluvium with OLM pushed into CLAY 22.0 to 24.3 ft bgs: greenish gray CLAY
25-30	4.7/5	28.7-29.7	1-2	CLAY and SAND: 25.0 to 28.7 ft: greenish gray CLAY with some OLM smeared along outside of clay 28.7 to 29.7 ft: medium gray medium to coarse SAND

Total Depth 30'

	Sample Collected	Comments: NR = No Recovery	
		ND = Non Detect	
GP-701 (9-11) 07012		NA = Not Applicable due to Hand Clearing	
	GP-701 (9-11) 070120 @ 15:00	NM = Not Measured	
	31 -701 (3-11) 070120 @ 13.30	Fill = brick/ceramic/coal/ash/wood fragments	
		SAA = Same As Above	
		F = Fine, M = Medium, C = Coarse, S = Sand	

A=COM	
AECUM	l

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office Page	1	0	f	1
------------------------------	---	---	---	---

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 7/2/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 7/2/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
Logged By: C. Howe	Total Depth of Boring (bgs): 23'	No well installed.

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	(Note: ogs = below ground surface)
0-5	2.5/5	-	-	SILT, SAND and CLAY: 0 - 2.0 ft bgs: dark SILT and CLAY loam 2.0 - 2.2 ft: clean fine SAND 2.2 - 2.5 ft: brown SILT and gray CLAY
5-10	4.8/5	8.3-9.4	30	SILT, CLAY, SAND and GRAVEL: 5.0 - 8.1 ft: medium brown and medium gray SILT and CLAY 8.1 - 8.3 ft: light gray SILTY fine SAND 8.3 - 9.4 ft: medium to coarse SAND and GRAVEL (alluvium) with OLM 9.4 - 9.8: light brown SILTY fine to medium SAND
10-15	4.4/5	10-11.4,11.4- 11.9, 11.9- 13.9, 19.9- 14.4	30, 2, 2, 2	SAND, GRAVEL and SILT: 10.0 - 11.4 ft: medium to coarse SAND and GRAVEL (alluvium) with some sheen in upper half of interval 11.4 - 11.9 ft: reddish brown, medium to coarse SAND and GRAVEL with SILT 11.9 - 13.9 ft: yellowish orange SILT and fine SAND 13.9 - 14.4 ft:medium brown medium to coarse SAND
15-20	4.7/5	15-17, 17- 19.7	4, 5-10	SAND: 15.0 - 17.0 ft: light brown fine to medium SAND, some SILT and GRAVEL 17.0 - 19.7 ft: light brown fine to medium SAND
20-23	3.1/3	20-23.1	5-10	SAND and BEDROCK: 20.0 - 23.1 ft: well sorted medium to coarse SAND 23.1 ft: weathered phyllite bedrock on bottom of sample tube

Refusal @ 23'

	Sample Collected	<u>Comments:</u> NR = No Recovery	
		ND = Non Detect	l
		NA = Not Applicable due to Hand Clearing	ı
		NM = Not Measured	l
		Fill = brick/ceramic/coal/ash/wood fragments	ı
		SAA = Same As Above	ı
		F = Fine, M = Medium, C = Coarse, S = Sand	l

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office Page	1	0	f	1
------------------------------	---	---	---	---

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 7/2/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 7/2/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
Logged By: C. Howe	Total Depth of Boring (bgs): 24'	No well installed.

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	
0-5	1.3/5	-	-	TOPSOIL: 0 to 1.3 ft bgs: topsoil over SILTY LOAM to 1.3 ft bgs.
5-10	4.8/5	6.5-9.5, 9.5- 9.8	<1, <1	SILT, CLAY and SAND: 5.0 - 5.7 ft: dark brown SILT and CLAY, soft and wet 5.7 - 6.5 ft: olive gray SILT 6.5 - 9.5 ft: olive gray SILT and fine SAND, darker at bottom of interval 9.5 - 9.8 ft bgs: well sorted fine to medium SAND
10-15	4.8/5	10.11.2, 11.2-12.1, 12.1-13, 13- 14.8		SAND and GRAVEL: 10.0 - 11.2 ft: fine to medium SAND 11.2 - 12.1 ft: reddish brown silty SAND and GRAVEL over dark olive/gray SILTY SAND and GRAVEL 12.1 - 14.8 ft: ft: medium brown fine to medium SAND, some SILT
15-20	4.3/5	15-19.3	15-16	SILT and SAND: 15.0 - 19.3 ft: light brown silty fine to medium SAND
20-24	4.2/4	20-21.7, 21.7-24.2	3-10, 15-20	SILT and SAND: 20.0 - 21.7 ft: light brown silty fine to medium SAND 21.7 - 24.2 ft: well sorted medium to coarse SAND

Refusal @ 24'

Sample Collected	Comments:
	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-703 (22-24) 070220 @ 10:30	NM = Not Measured
G1 700 (22 24) 070220 @ 10.00	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

	4					

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office	Page	<u> </u>	1 1	of '	1
(070) 000 2100 - 01100	· ugu	′ '	`	<u></u>	·

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush Stick Up Height: 2'
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 7/2/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 7/2/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
· · · · · · · · · · · · · · · · · · ·		

No well installed. Logged By: C. Howe Total Depth of Boring (bgs): 30'

			,	(Note: bgs = below ground surface)
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	
0-5	2.5/5	0-2.5	2-5	TOPSOIL and SILT: 0 to 2.5 ft bgs: brown, silty loam over light brown SILT, some fine SAND
5-10	3.9/5	5-6, 6.8-8.9	5, 2	SAND, SILT and CLAY: 5.0 - 6.0 ft: light brown silty fine SAND 6.0 - 6.8 ft: dark brown SILT with some fine SAND 6.8 - 8.9 ft: wet, medium brown SILT and SILTY CLAY grading to greenish gray SILT
10-15	3.4/5	11.4-12.5	1-2	SILT and SAND: 10.0 - 11.4 ft: greenish gray SILT over greenish gray SILT and fine SAND 11.4 - 12.5 ft: light gray fine SAND with some dark organic rich zones (roots) 12.5 - 13.1 ft: gray SILTY SAND and GRAVEL grading to medium brown in color 13.1- 13.4 ft: yellowish orange silty fine SAND
15-20	3.4/5	15.9-16.7, 17.4-18	<1, 1	SILT, SAND and GRAVEL: 15.0 - 15.9 ft: medium brown SILT grading to greenish gray color 15.9 - 16.7 ft: dark brown and gray SILT and SILTY fine SAND 16.7 - 17.4 ft: clean fine SAND with some SILT 17.4 - 18.0 ft: medium brown silty SAND and GRAVEL 18.0 - 18.4 ft: reddish brown fine SAND with some SILT
20-25	3.3/5	20-20.4, 20.4-21.4, 22.2-23.3	4, <1, 0.5-2	SILT and SAND: 20.0 - 20.4: medium brown SILT, SAND and GRAVEL 20.4 - 21.4 ft: reddish brown SILT and fine SAND 21.4 - 22.2 ft: reddish brown medium to fine SAND 22.2 - 23.3 ft: gray medium to fine SAND
25-30	2.2/5	-	-	SAND: 25.0 - 27.2 ft: gray medium to coarse SAND

End of Boring @ 30' No Refusal Encountered

Sample Collected	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-704 (25.2-27.2) 070220 @ 11:45	NM = Not Measured
G1 -704 (23.2-27.2) 070220 @ 11.43	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

AECON
250 Apollo Drive, Chelmsford MA 01
(978) 905-2100 - office
Project Name: Unitil - Roches
Project Number: 60139732

	4 =C(MC		GP-705				
250 Apollo D (978) 905-210	rive, Chelmsfo)0 - office	rd MA 01824				Page 1 of 1		
Project Na	me: Unitil -	Rochester, N	H	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'		
Project Nu	ımber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA NA		
Date Start	ed Drilling:	7/1/2020		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs	s): NA		
Date Finished Drilling: 7/1/2020 Date Pre-Cleared: N/A Riser (bgs						NA		
Location: Route 125, Rochester, NH Water Level While Drilling (bgs): N/A Well Scrn: Depth (bgs):						NA		
Logged By	y: C. Howe			Total Depth of Boring (bgs): 30'	No wel	l installed.		
	1	T	ı			(Note: bgs = below ground surface)		
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)					
0-5	3.6/5	0.7-3.6	1	TOPSOIL, SILT and CLAY: 0 - 0.7 ft bgs: topsoil over rock 0.7 to 3.6 ft: layers of yellowish orange SILT and greenish (gray CLAY			
5-10	4.7/5	-	-	SILT and CLAY: 5.0 - 9.7 ft: layers of yellowish orange SILT and greenish g	ray CLAY			
10-15	3.1/5	11.6-13.1	1	SILT and CLAY: 10.0 - 11.6 ft: layers of yellowish orange SILT and greenish 11.6 - 13.1 ft: sandy SILT grading from medium brown to ve				
15-20	4.8/5	15-17.6	<1.5	SILT, CLAY, SAND and GRAVEL: 15.0 - 17.6 ft: medium brown to dark gray SILT and fine SA 17.6 - 18.3 ft: olive gray SILTY CLAY 18.3 - 18.9 ft: dark brown to black SILT 18.9 - 19.8 ft: gravelly alluvium (SAND and GRAVEL)	ND			
20-25	4.8/5	20-21.5	20-25	SAND, GRAVEL, and CLAY: 20.0 - 21.5 ft: medium SAND and GRAVEL with OLM 21.5 - 24.8 ft: light brown to greenish/gray CLAY				
25-30	1.7/5	25-26.7	<5	SILT, CLAY and SAND: 25.0 - 26.7 ft: loose, medium brown SILT, CLAY and fine S	AND (possible hole collapse)			

End of Boring @ 30' No Refusal Encountered

Sample Collected	Comments: NR = No Recovery
	ND = Non Detect
GP-705 (20-22) 070120 @ 12:50	NA = Not Applicable due to Hand Clearing
	NM = Not Measured
	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

$\Delta \equiv 0$	CO	M

17-17.5

20-23.5

29-29.7

<1

>150

0.5

15-20

20-25

25-30

4/5

4.8/5

4.7/5

GP-706

250 Apollo Drive, Chelmsford MA 01824 (978) 905-2100 - office

Project Name. Offici - Rochester, Ni			•••	Drilling Company. New England Boring Contractors	Surface Comp. I lush	Prick of Lifeight. 2
Project Number: 60139732				Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
Date Started Drilling: 7/1/2020				Rig Type: Geoprobe Pre Pack Filter Pack (bgs): NA		s): NA
Date Finis	hed Drilling	: 7/1/2020		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125,	Rochester, N	Н	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs):	NA
Logged B	y: C. Howe			Total Depth of Boring (bgs): 30'	No wel	l installed.
D41-	1	1		1		(Note: bgs = below ground surface
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			
0-5	3.5/5	1-2	2-3	TOPSOIL, SILT and SAND: 0 - 1.0 ft bgs: dark brown CLAY LOAM 1.0 - 3.5 ft: yellow/orange to light brown SILT and fine SANI	0	
5-10	2.7/5	5.8-6.6	7-7.2, 1-2	CLAY, SILT and SAND: 5.0 - 5.5 ft: light gray CLAY with layers of light brown SILT a 5.5 - 5.8 ft: light gray CLAY 5.8 -6.6 ft: yellow orange SIL TY fine SAND with dark brown 6.6 - 6.9 ft: light gray CLAY 6.9 -7.7 ft: light brown SILT		
10-15	4.8/5	-	-	SILT and SAND: 10.0 - 10.4 ft: medium brown SILT 10.4 - 11.1 ft: dark brown SILT and fine SAND 11.1 - 14.4 ft: SILT layers of varying color 14.4 - 14.8 ft: light brown SILTY SAND and GRAVEL (perh	aps weathered rock)	

SILT, SAND and GRAVEL: 15.0 - 15.9 ft: light brown SILT

CLAY, SAND and GRAVEL:

CLAY and SAND:

23.5 - 24.8 ft: greenish gray CLAY

25.0 - 29.0 ft: greenish gray CLAY

15.9 - 17.0 ft: medium to coarse SAND and GRAVEL

29.0 - 29.7 ft: greenish gray fine to medium SAND

End of Boring @ 30' No Refusal Encountered

17.0 - 17.5 ft: black SILTY SAND and rock fragments (weathered phyllite) 17.5 - 19.0 ft: gray/brown/reddish medium to coarse SAND and GRAVEL

20.0 - 23.5 ft: black/red medium to coarse SAND and GRAVEL, some thin layers of light gray fine SAND

Sample Collected	Comments: NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-706 (21.5-23.5) 070120 @ 11:15	NM = Not Measured
	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

A=CO/	V	1
	•	

250 Apo

AECOM	GP-707
Apollo Drive, Chelmsford MA 01824	

(978) 905-2100 - office		Page1 of1
Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush stick Up Height: 2'
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 7/1/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 7/1/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA

Logged By: C. Howe Total Depth of Boring (bgs): 30' No well installed.

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	(vote: bgs = below ground surface
0-5	4.2/5	-	-	SAND and CLAY: 0 - 3.4 ft bgs: light to medium brown SILTY fine SAND with some thin CLAY layers and medium to coarse SAND horizons 3.4 - 4.2 ft: yellow/orange SILT with some darker grains, faint odor but no significant PID signal
5-10	4.5/5	7.3-9.5	1	SILT: 5.0 - 7.3 ft: yellow/orange SILT 7.3- 9.5 ft: light brown SILT, some fine SAND
10-15	4.5/5	-	-	SILT, SAND and GRAVEL: 10.0 - 12.7 ft: light brown SILT, some thin layers of fine SAND at bottom of interval 12.7 - 12.9 ft: light brown medium to coarse SAND 12.9 - 13.2 ft: light gray fine SAND 13.2 - 14.5 ft: SAND and GRAVEL (alluvium)
15-20	3.6/5	15-17.3, 17.3-18.6	0, 0	SAND and GRAVEL: 15.0 - 17.3 ft: light brown to light gray layers of SAND and GRAVEL (alluvium) 17.3 - 18.6: ft: light brown medium SAND with layers of coarse SAND and GRAVEL, some SILTY SAND layers
20-25	3.8/5	20-23.6	0	SAND and SILT: 20.0 - 23.6 ft: light brown fine to medium SAND with some SILT and coarse SAND (possible hole collapse) 23.6 - 23.8 ft: light brown SILT and fine SAND
25-30	3.8/5	25-28.1	<1	SAND and SILT: 25.0 - 28.1 ft: light brown fine to medium SAND 28.1 - 28.8 ft: light gray SILTY fine SAND

End of Boring @ 30' No Refusal Encountered

Sample Collected	Comments:	l
<u> </u>	NR = No Recovery	l
	ND = Non Detect	ĺ
	NA = Not Applicable due to Hand Clearing	l
GP-707 (26.8-28.8) 070120 @ 10:00	NM = Not Measured	l
G1 -101 (20.0-20.0) 010120 @ 10.00	Fill = brick/ceramic/coal/ash/wood fragments	l
	SAA = Same As Above	l
	F = Fine, M = Medium, C = Coarse, S = Sand	l

	AEC(GP-	-708				
(978) 905-210	rive, Chelmsfo 10 - office	rd MA 01824				Page _	1	of	1
Project Na	me: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	tick Up	<u>— —</u> Неі	 ght: 2'	
Project Nu	mber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA			
Date Starte	ed Drilling:	6/29/2020		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs	s): NA			
Date Finis	hed Drilling	: 6/29/2020		Date Pre-Cleared: N/A	Riser (bgs):	NA			
Location:	Route 125, F	Rochester, NH	1	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs):	NA			
Logged By	: C. Howe			Total Depth of Boring (bgs): 24.5'	No wel	l installed	I.		
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			(Note: bg	s = belo	w ground	d surface
0-5	4.5/5	-	-	SILT AND SAND: 0 - 0.8 ft bgs: brown topsoil over olive gray SILT 0.8 - 4.5 ft: yellowish orange fine SAND to 4.5 ft bgs.					
5-10	4.1/5	8.3-8.8, 8.8- 9.1	10, 40	SILT and SAND: 5.0 - 5.6 ft: yellowish orange fine SAND 5.6 - 8.3 ft: light brown fine SAND and SILT grading to olive 8.3 - 8.6 ft: black fine SAND and SILT w/petroleum odor 8.8 - 8.8 ft: weathered rock (biotite rich), petroleum odor 8.8 - 9.1 ft: brown SAND and GRAVEL (alluvium), OLM in v					
10-15	3.9/5	10-11.1, 11.1-13.9	7, 150-200	SILT, SAND and GRAVEL: 10.0 - 11.1 ft: brown fine SAND and SILT, sheen rising to s 11.1 - 13.9 ft: bgs, medium to coarse SAND and GRAVEL					
15-20	4.6/5	12-12.9, 15.9-16.4, 16.4-19.6	200, 150, 20-60	SAND, GRAVEL and SILT: 15.0 - 15.9 ft: medium to coarse SAND and GRAVEL with 0 15.9 - 16.4 ft: light brown SILT and fine SAND over thin lay 16.4 - 19.6 ft: tan to light brown fine SAND and SILT, some	er of greenish gray CLAY	ained med	dium S	AND ho	orizons
20-24.5	4.3/5	20-20.5, 20.5-21, 21- 21.7, 21.7- 23.1, 23.1- 24.3	200, 30, 10, 250, 100	SAND, GRAVEL and SILT: 20.0 - 20.5 ft: SAND and GRAVEL (alluvium) with OLM 20.5 - 21.0 ft: light brown to tan SILT and fine SAND 21.0 - 21.7 ft: greenish gray SILT and CLAY layers 21.7 - 23.1 ft: fine to medium SANDs some SILT and GRAY 23.1 - 24.3 ft: light brown to tan SILT and fine SAND	VEL layers, coarser layers wit	h OLM an	d dark	stainin	g

Refusal @ 24.5'

Sample Collected	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
2 Samples: GP-708(11.9-13.9) 62920 @ 10:26, GP-708(21.7-23.7) 62920 @ 10:57	NA = Not Applicable due to Hand Clearing
	NM = Not Measured
	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

	4 <i>E</i> C	MC		GP.	-709	
250 Apollo D	rive, Chelmsfo	rd MA 01824				
(978) 905-210	0 - office					Page1 of1
Project Na	me: Unitil -	Rochester	, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
Project Nu	ımber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
Date Start	ed Drilling:	6/26/2020		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finis	hed Drilling	: 6/26/2020		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125,	Rochester,	NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs):	NA
Logged By	y: C. Howe			Total Depth of Boring (bgs): 30'	No well	installed.
Domth	1	PID		T		(Note: bgs = below ground surface
Depth Range (feet)	Recovery (ft/ft)	Depth (feet)	10.6 PID (ppm)			
0-5	3.8/5	-	-	SILT and SAND: 0 - 3.8 ft bgs: SILT with fine to medium SAND and some G brown at 2.1 ft bgs.	RAVEL, brick and concrete, g	rading from light brown to dark
5-10	2.2/5	-	-	SILT and SAND: 5.0 - 7.2 ft: dark brown SILT with fine to medium SAND and	d some GRAVEL, brick and co	ncrete pieces
10-15	1.2/5	10.8-11	1	SILT, SAND and CLAY: 10.0 - 10.8 ft: dark brown SILT with fine to medium SAND a 10.8 - 11.0 ft: black, SILT and CLAY, loose with faint petrol 11.0 - 11.2 ft: stiff, greenish gray CLAY		concrete
15-20	2.8/5	16.517.8	50	CLAY, SAND and GRAVEL: 15.0 - 16.5 ft: greenish gray, CLAY 16.5 - 17.8 ft: medium to coarse SAND and GRAVEL (alluv	rium) with voids filled with OLN	л, strong odor
20-25	4.8/5	20-21, 21.5-23.3	200, 60- 100	SAND, GRAVEL, SILT and CLAY: 20.0 - 21.0 ft: medium to coarse sand and gravel (alluvium) 21.0 - 21.5 ft: greenish gray SILT 21.5 - 23.3 ft: layers of fine to medium SAND, OLM in voids 23.3 - 23.6 ft: greenish gray CLAY 23.6 - 24.8 ft: light brown and gray layers of SAND and SIL	s of coarser layers	·
25-30	3.9/5	25-26.2	10-30	SILT and SAND: 25.0 - 26.2 ft: brown layers of medium SILT, fine and mediu 26.2 - 27.9 ft: greenish gray layers of SILT, fine and mediur 27.9 - 28.9 ft: coarse SAND, some silt and fine sand, over w	n SAND	

End of Boring @ 30' No Refusal Encountered

Sample Collected	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
2 Samples: GP-709 (20-22) 62620 @ 15:16,	NM = Not Measured
GP-709 (22-24) 62620 @ 15:33	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

A=CO/	V	
AECU		

GP-710

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office	Page _	1	_ of	_1_
-------------------------	--------	---	------	-----

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flushstick Upleight: 2'
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 6/30/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 6/30/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
Logged By: C. Howe	Total Depth of Boring (bgs): 24'	No well installed.
		(81-4

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	(Note: bgs - below ground surface)
0-5	3.2/5	0-1.7	0	TOPSOIL, SILT and SAND: 0 - 1.7 ft bgs: SILTY loam over dark brown SILTY SAND 1.7 - 2.4 ft: light brown fine to coarse SAND and GRAVEL, small gray CLAY horizons 2.4 - 3.2 ft: yellow/orange to rusty red medium to coarse SAND
5-10	4.8/5	-	-	SAND and SILT: 5.0 - 5.7 ft: yellow/orange medium SAND with dark brown SILTY find SAND layers 5.7 - 8.2 ft: light brown SILT grading to dark brown with depth 8.2 - 9.8 ft: medium brown SILT with some small, silvery particles (mica?)
10-15	3.8/5	13.3-13.8	7-12	SAND and GRAVEL: 10.0 - 12.1 ft: medium brown, loose, wet SILT with some OLM, dark brown grading to medium brown fine to medium SAND, some coarse SAND and GRAVEL 12.1 - 12.4 ft: dark brown to black fine to mediun SAND 12.4 - 12.8 ft: medium gray fine SAND over brown medium to coarse SAND 12.8 - 13.1 ft: dark brown fine SAND with woody debris 13.1 - 13.3 ft: gray fine SAND and SILT 13.3 - 13.8 ft: medium to coarse SAND and GRAVEL (alluvium) with some OLM
15-20	4.7/5	15-19	20	CLAY: 15.0 - 19.7 ft: greenish gray CLAY.
20-24	4.2/4	20-20.6, 20.6-23.2	40-70	CLAY, SAND and SILT: 20.0 - 20.6 ft: greeyish gray CLAY with some sandy horizons containing OLM 20.6 - 23.2 ft: fine to medium SAND, dark with OLM, some thin greenish gray CLAY layers 23.2 - 23.5 ft: greenish gray CLAY and light brown SILT layers, less OLM with depth 23.5 - 23.7 ft: light brown coarse SAND 23.7 - 24.2 ft: light brown fine SAND and SILT

Refusal @ 24'

On words On the start	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-710 (20-22) 063020 @ 14:40	NM = Not Measured
GF -7 10 (20-22) 003020 @ 14.40	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

AΞ	COM
A=	

GP-711

250 Apollo Drive, Chelmsford MA 01824

(978) 905-2100 - office Page	1	0	f	1
------------------------------	---	---	---	---

Project Name: Unitil - Rochester, NH	Drilling Company: New England Boring Contractors	Surface Comp: Flush
Project Number: 60139732	Drilling Method: Direct Push Technology	Bentonite (bgs): NA
Date Started Drilling: 6/30/2020	Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finished Drilling: 6/30/2020	Date Pre-Cleared: N/A	Riser (bgs): NA
Location: Route 125, Rochester, NH	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs): NA
Logged By: C. Howe	Total Depth of Boring (bgs): 24'	No well installed.

(Note: bgs = below ground surface)

Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)	
0-5	3.7/5	0-3.7	0	TOPSOIL, SAND, SILT and CLAY: 0 - 3.7 ft bgs: medium brown layers of fine to medium SAND, SILT and CLAY to 3.7 ft bgs.
5-10	4.3/5	7.5-8.8, 8.8- 9.3	2, 4	SAND, SILT and CLAY: 5.0 - 6.2 ft: medium brown layers of fine to medium SAND, SILT and CLAY 6.2 - 9.3 ft: layers of dark brown SILT and fine SAND with woody debris, some odor
10-15	4.8/5	10.11.1, 11.1-14.8	6-17, 5-6	SAND, GRAVEL, CLAY and SILT: 10.0 - 11.1 ft: fine to coarse SAND and GRAVEL with OLM in voids 11.1 - 14.8 ft: greenish gray CLAY layers, fine to medium SAND and SILT with reddish brown coarser horizons
15-20	4.8/5	15-19.8	1	SAND and GRAVEL: 15.0 - 19.8 ft: layers of fine to coarse SAND, some SILT layers, various colors
20-24	3.3/4	20.2-22.6	0	SAND and SILT: 20.0 - 20.2 ft: SANDY SILT 20.2 - 22.6 ft: light brown fine to medium SAND 22.6 - 23.3 ft: medium to coarse SAND

Refusal @ 24'

	Sample Collected	Comments:	1
	Sample Collected	NR = No Recovery	
		ND = Non Detect	
		NA = Not Applicable due to Hand Clearing	
	GP-711 (10-12) 060320 @ 11:30	NM = Not Measured	
	G1 -711 (10-12) 000020 @ 11.30	Fill = brick/ceramic/coal/ash/wood fragments	
		SAA = Same As Above	
		F = Fine. M = Medium. C = Coarse. S = Sand	l

A=CO/	И	
	•	

25-26.5

1/1.5

25-26

3

GP-712

1_

_				O .	—	
250 Apollo D (978) 905-210	rive, Chelmsfoi	rd MA 01824				Page 1 of 1
` ,		Rochester. N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
				Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
Range				Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finis	hed Drilling:	: 6/29/2020		Date Pre-Cleared: N/A	Riser (bgs):	NA NA
· · · · · · · · · · · · · · · · · · ·		1	Water Level While Drilling (bgs): N/A Well Scrn: Depth (bgs)		NA	
Logged By	/: C. Howe			Total Depth of Boring (bgs): 26.5'	No well	installed.
	1	ı	1			(Note: bgs = below ground surface
Range	,		10.6 PID (ppm)			
0-5	2.5/5	-	-	TOPSOIL: 0 - 2.5 ft bgs: dark loam with some GRAVEL		
5-10	2.5/5	5-10	2	SILT and SAND: 5.0 - 7.5 ft: dark brown to black SILT and fine SAND		
10-15	2.7/5	10-11.8, 12.2-12.7	10, 50	SILT, SAND and CLAY: 10.0 - 11.8 ft: dark brown to black SILT and fine SAND, we 11.8 - 12.2 ft: dark gray SILTY CLAY 12.2 - 12.7 ft: medium to coarse SAND with woody debris a		
15-20	4.7/5	15-16.3, 16.3-18.3, 18.3-19.1, 19.1-19.7		SAND and SILT: 15.0 - 18.3 ft: layers of dark brown to black fine SAND and 18.3 - 19.1 ft: layers of fine to medium SAND with some SI 19.1 - 19.7 ft: light gray fine SAND, some CLAY layers and	ILT and CLAY, various colors	with OLM
20-25	4.2/5	20-21.4, 21.4-23.3, 23.3-24.2		CLAY, SAND and GRAVEL: 20.0 - 21.4 ft: light gray fine SAND with some CLAY layers 21.4 - 23.3 ft: layers of silt and fine to medium SAND with s 23.3 - 24.2 ft: gray fine to medium SAND and GRAVEL, so		
25 26 5	1/1 5	25.26	2	BEDROCK:		

Refusal @ 26.5'

25.0 - 26.0 ft: weathered bedrock to 26 ft bgs.

Sample Callected	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-712 (20-22) 062920 @ 14:30	NM = Not Measured
	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

	4EC	MC		GP-	·713	
250 Apollo D	rive, Chelmsfo	rd MA 01824				
(978) 905-210	0 - office					Page1 of1_
Project Na	me: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
Range (feet) (ft/ft) (feet) (ppm 0-5 4.8/5			Drilling Method: Direct Push Technology	Bentonite (bgs):	NA	
Date Start	ed Drilling:	6/29/2020		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs): NA
Date Finis	hed Drilling	: 6/29/2020		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125, I	Rochester, NI	Н	Water Level While Drilling (bgs): N/A	Well Scrn: Depth (bgs):	NA
Logged B	y: C. Howe			Total Depth of Boring (bgs): 30'	No well	installed.
	1	1	I			(Note: bgs = below ground surfa
Range			10.6 PID (ppm)			
0-5	4.8/5	-	-	SILT and CLAY: 0 - 4.8 ft bgs: light brown SILT with some clay		
5-10	4.5/5	-	-	SILT and CLAY: 5.0 - 9.5 ft: light brown SILT and SILTY CLAY with some CL	.AY horizons at 7.5-7.7 ft	
10-15	4.8/5	-	-	SILT and CLAY: 10.0 - 12.5 ft: light to medium brown SILT and SILTY CLAY 12.5 - 14.8 ft: greenish gray CLAY and SILT		
15-20	4.1/5	-	-	SILT, SAND, GRAVEL and CLAY: 15.0 - 16.3 ft: light brown fine SAND and SILT 16.3 - 17.7 ft: SILT, SAND and GRAVEL (alluvium) with OL 17.7 - 19.1 ft: greenish gray, tight CLAY	M in some horizons, light odo	r

End of Boring @ 30' No Refusal Encountered

25.5 - 26.3 ft: greenish gray CLAY with several red/brown fine to medium SAND layers 26.3 - 28.9 ft: light brown fine to medium SAND with some CLAY and SILT horizons

20.0 - 20.2 ft: fine to medium SAND, medium brown to black layers

21.3 - 24.6 ft: light brown fine to medium SAND with some layers of greenish gray SILT and CLAY, and dark bands of

20.2 - 21.3 ft: greenish gray CLAY with some SILT layers

25.0 - 25.5 ft: light brown medium to coarse SAND

SAND and SILT:

medium SAND
SAND and CLAY:

20-25

25-30

4.6/5

3.9/5

Sample Collected	Comments:
Sample Collected	NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
GP-713 (16-18) 063020 @ 9:45	NM = Not Measured
Gr -7 13 (10-10) 003020 @ 9.43	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

	AEC	MC		GP	-901	
	Drive, Chelmsfo	rd MA 01824				
(978) 905-21						Page1 of1
_	Project Name: Unitil - Rochester, NH			Drilling Company: New England Boring Contractors	Surface Comp: Flush	
_	Project Number: 60139732			Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
	ted Drilling:			Rig Type: Geoprobe	Pre Pack Filter Pack (bo	gs): NA
Date Finis	shed Drilling	:12/4/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
		Rochester, NI	H	Water Level While Drilling (bgs): 2 feet	Well Scrn: Depth (bgs):	
Logged B	By: C. Howe			Total Depth of Boring (bgs): 6.0	No we	ell installed.
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			(Note: bgs = below ground surface
0-5	3.3/5		1.2 to 1.4	SILT, SAND and GRAVEL: 0 - 1.3 ft bgs: silty brown Loam 1.3 - 2.5 ft: gray fine sand, some silt 2.5 - 3.3: silt, sand and gravel (alluvium)		
5-6	1/1			SILT, SAND and GRAVEL: 5.0 - 5.8 ft: alluvium, some sheen and OLM in blebs 5.8 - 6.0 ft: bedrock		
			1	End of Boring @ 6' Refusal Encountered		
				Ground surface approximately 3 feet above Axe Handle B	rook surface	
				10		
	Sample	Collected		Comments: NR = No Recovery		
				ND = Non Detect		

NA = Not Applicable due to Hand Clearing

Fill = brick/ceramic/coal/ash/wood fragments

F = Fine, M = Medium, C = Coarse, S = Sand

NM = Not Measured

SAA = Same As Above

4 - 6 moderately impacted horizon with OLM in blebs

_	AEC(GP	-902	
(978) 905-210	orive, Chelmsfo 00 - office	TU IVIA U1024				Page1 of1_
Project Na	ame: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
Project Nu	umber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA NA
Date Start	ed Drilling:	12/3/20		Rig Type: Geoprobe	Pre Pack Filter Pack (be	gs): NA
Date Finis	hed Drilling	:12/3/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125, F	Rochester, NH	1	Water Level While Drilling (bgs): 2'	Well Scrn: Depth (bgs):	NA
Logged By	y: C. Howe			Total Depth of Boring (bgs): 10.0	No w	ell installed.
Dth-		l		Т		(Note: bgs = below ground surface
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			
0-5	3.9/5		0	SAND: 0 - 0.7 ft bgs: topsoil and organic debris 0.7 - 3.2 ft: light brown fines sand, some silt 3.2 - 3.9: medium to coarse sand, some gravel		
5-10	3.5/5	5 6 7.9	5 <2 30	SILT, SAND and GRAVEL: 5.0 - 6.0 ft: medium to coarse sand and gravel, some shee 6.0 - 8.5 ft: silt, fine sanc and gravel, some sheen	n	
10 - 12.5	1.6/2.5			SAND and GRAVEL: Poor recovery in highly impacted area Significant OLM, potentially saturate Recovered material was disturbed during sampling, difficul	t to characterize lithology	
		,		End of Boring @ 12.5' Refusal Encountered		
				Ground surface approximately 4 feet above Axe Handle Br Located along A-A transect (GP-712 and GP-713)	ook surface.	
				Comments:		

Sample Collected	NR = No Recovery
	INC - NO Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
significant impact (OLM saturation) in lower	NM = Not Measured
horizon above bedrock	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

	AEC(MC		GP	-903	
250 Apollo D (978) 905-210	rive, Chelmsfo	rd MA 01824				Page1 of1_
Project Name: Unitil - Rochester, NH			H	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
-	ımber: 6013	•		Drilling Method: Direct Push Technology	Bentonite (bgs):	 NA
Date Start	ed Drilling:	12/3/20		Rig Type: Geoprobe	Pre Pack Filter Pack (bg	s): NA
Date Finis	hed Drilling	:12/3/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125, F	Rochester, NH	1	Water Level While Drilling (bgs): 2'	Well Scrn: Depth (bgs):	NA
ogged By	y: C. Howe			Total Depth of Boring (bgs): 10.0	No we	ll installed.
	T		T			(Note: bgs = below ground surface
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			
0-5	4.2/5	4.2	4	SILT, SAND and GRAVEL: 0 - 3.7 ft bgs: dark silty loam and fine sand grading to light 0.7 - 3.2 ft: light brown fines sand, some silt 3.7 - 4.2 ft: medium to coarse sand and gravel, some shee		
5-10	5/5	5 - 8 8 - 10	67 - 150 2 - 3	CLAY, SILT, SAND and GRAVEL: 5.0 - 6.1 ft: light brown silty fine sand, some sheen 6.1 - 7.9 ft: gravel and rock with some silt and sand (alluvir 7.9 - 8.4 ft: light brown silt and clay 8.4 - 10.0 ft: light gray layers of silt, fine sand, loose clay	um), some OLM and odor, hig	ıh PID
10 - 15	4.5/5		< 4	SILT and SAND: 10 - 13 ft: light gray silt and fine sand layers 13 - 14.5 ft: weathered rock		
15 - 16.4	1/1.4			SAND and GRAVEL: 15 - 16: dark brown medium to coarse sand and gravel, oil	y sheen, PID of up to 35 due	to fall in from above
	l			End of Boring @ 16.4' Refusal Encountered		
				Ground surface approximately 3 feet above Axe Handle Bi Located midway between GP 902 and GP-904	rook surface.	

Sample Collected	Comments: NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
6.5 - 8.5	NM = Not Measured
moderate to highly impacted horizon	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine M = Medium C = Coarse S = Sand

250 Apollo D	AEC(GP	-904	
(978) 905-210		Dachastan N		Dulling Commence New England Basing Contractors	Surface Comm. Fluck	Page1 of1_
		Rochester, N	IH .	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
-	umber: 6013			Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
	ed Drilling:			Rig Type: Geoprobe	Pre Pack Filter Pack (b	<u> </u>
	hed Drilling			Date Pre-Cleared: N/A	Riser (bgs):	NA NA
	y: C. Howe	Rochester, N	1	Water Level While Drilling (bgs): 2'	Well Scrn: Depth (bgs)	: NA vell installed.
Logged by	y. C. nowe			Total Depth of Boring (bgs): 20.0	NO W	(Note: bgs = below ground surface
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			, , ,
0-5	3.8/5		0	SILT and SAND: 0 - 3.8 ft bgs: topsoil over fine sand and silt, grading from I	ight brown to light gray at 2.	.5 ft bgs
5-10	5/5	5 9 10	0 3-6 17	SILT, SAND and GRAVEL: 5.0 - 7.3 ft: brown fine sand and silt 7.3 - 9.2 ft: some gray medium to coarse sand over silt, sa 9.2 10.0 ft: silt and fine sand, OLM at 9 - 9.5	and and gravel (alluvium), s	ome sheen
10 - 15	5/5	10 10.2 - 14 14	60 1 - 4 0	CLAY, SILT, SAND and GRAVEL: 10 - 10.2 ft: sand and gravel (alluvium), some OLM 10.2 - 10.8 ft:gray fine sand and silt, some OLM 10.8 - 14.3 ft: layers of gray fine sand, silty sand, clay 14.3 - 15 ft: fine to medium gray sand		
15 - 20	5/5	15 - 16.5 16.5 - 17.3 17.3 - 20	20 - 40 5 - 7 2 - 5	SILT and SAND: 15 - 16.5 ft:light brown medium silty sand, sheen present 16.5 - 17.3 ft: brown silty fine sand, sheen at 17.0 - 17.3 17.3 - 18.0 ft: gravelly f - m brown sand over silty sand 18.0 - 20.0 ft: gray silt, sand and gravel (till?)		
				End of Boring @ 20.0 Refusal Encountered		
				Ground surface approximately 2 feet above Axe Handle Br Located along B-B transect (GP-708 to GP-711)	ook surface.	

Comments: NR = No Recovery

ND = Non Detect

NM = Not Measured

SAA = Same As Above

NA = Not Applicable due to Hand Clearing

Fill = brick/ceramic/coal/ash/wood fragments

F = Fine, M = Medium, C = Coarse, S = Sand

Sample Collected

9 - 11

moderately impacte horizon

AECOM 250 Apollo Drive, Chelmsford MA 01824				GP.	-905	
250 Apollo D (978) 905-210	•	rd MA 01824				Page1 of _
` ,		Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	
	ımber: 6013			Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
-	ed Drilling:			Rig Type: Geoprobe	Pre Pack Filter Pack (bgs	s): NA
Date Finis	hed Drilling	:12/3/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125, F	Rochester, NI	H	Water Level While Drilling (bgs): 2'	Well Scrn: Depth (bgs):	NA
Logged By	y: C. Howe			Total Depth of Boring (bgs): 30.0	No wel	l installed.
	1	ı	T			(Note: bgs = below grou
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			
0-5	4.0/5		0	SILT and SAND: 0 - 4.0 ft bgs: fine sand and silt grading from light brow to ta	an at 2.0 ft	
5-10	2.3/5	5 - 6.8 6.8 - 7.3	15 1	SILT and SAND: 5.0 - 6.8 ft: brown fine sand and silt, significant sheen 6.8 - 7.3 ft: dark gray fine sand and silt, significant sheen		
10 - 15	3.7/5	10 10.3 - 13.7	2 <1	CLAY, SILT, SAND and GRAVEL: 10 - 10.3 ft: silt, sand and gravel, some sheen 10.3 - 11.7 ft: soft gray clay 11.7 - 13.7 ft: fine gray sand with some layers of silt and cla	ay	
15 - 20	4.3/5		6 - 20	SAND: 15 - 16.5 ft: reddish brown f - m sand, gray silt and clay lay: 16.5 - 17.6 ft: gray f - m sand 17.6 - 19.3 ft: reddish brown f - m sand	er at 15.4 - 15.6	
20 - 25	4.2/5		2 - 7	SAND: 20 - 24.2 ft: clean tan sand, some finer and coarser horizon	ıs	

elow ground surface)

End of Boring @ 30.0 Refusal Not Encountered

SAND:

25 - 29.5 ft: same as above

4 - 6

25 - 30

4.5/5

Ground surface approximately 4 feet above Axe Handle Brook surface. Located midway between GP 904 and GP-906

Sample Collected	Comments: NR = No Recovery	
	ND = Non Detect	
	NA = Not Applicable due to Hand Clearing	
	NM = Not Measured	
	Fill = brick/ceramic/coal/ash/wood fragments	
	SAA = Same As Above F = Fine, M = Medium, C = Coarse, S = Sand	

			GP	-906	
00 - office					Page1 of1_
ame: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
ımber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
ed Drilling:	12/4/20		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs	s): NA
hed Drilling	:12/4/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
Route 125, F	Rochester, NI	1	Water Level While Drilling (bgs): 15	Well Scrn: Depth (bgs):	NA
y: C. Howe			Total Depth of Boring (bgs): 30.0	No wel	l installed.
Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			(Note: bgs = below ground surfa
2.8/5		0	SILT: 0.8 ft bgs: silty brown loam ft: firm tan silt, some gravel		
4.0/5		0	SILT: 9.0 ft: same as above		
2.9/5		0	SILT and SAND: 11.8: same as above 12.3 ft: tan f - m sand stiff tan silt		
4.1/5	15 - 17 17.5 18	11 - 17 100 3	CLAY, SILT, SAND and GRAVEL: 15 - 16.0 ft: tan silt and fine sand 16.0 - 17.7 silt, sand and gravel, OLM starting at 17.0 17.7 - 18.1 ft: moderately firm clay, grading from olive gray	to blue	
5.0/5			CLAY: 20 - 25.0 ft: blue gray clay		
3.8/5			CLAY: 25 - 28.8 ft: same as above		
	1	1	End of Boring @ 30.0 Refusal Not Encountered		
	rive, Chelmsfo 20 - office Ime: Unitil - Imber: 6013: ed Drilling: hed Drilling: hed Drilling: Y: C. Howe Recovery (ft/ft) 2.8/5 4.0/5 4.1/5 5.0/5	me: Unitil - Rochester, Number: 60139732 ed Drilling: 112/4/20 hed Drilling: 12/4/20 Route 125, Rochester, Niv: C. Howe Recovery (ft/ft) PID Depth (feet) 2.8/5 4.0/5 4.1/5 15 - 17 17.5 18 5.0/5	rive, Chelmsford MA 01824 20 - office Ime: Unitil - Rochester, NH Imber: 60139732 ed Drilling: 12/4/20 hed Drilling: 12/4/20 Route 125, Rochester, NH y: C. Howe Recovery (ft/ft) PID Depth (ppm) 2.8/5 0 4.0/5 0 2.9/5 0 4.1/5 15 - 17 11 - 17 17.5 100 18 3	rive, Chelmsford MA 01824 101 - office Imme: Unitil - Rochester, NH Immer: 60139732 Drilling Method: Direct Push Technology ed Drilling: 12/4/20 Rig Type: Geoprobe hed Drilling: 12/4/20 Date Pre-Cleared: N/A Route 125, Rochester, NH If the covery (feet) Recovery (fiviti) PID Depth (feet) 0 SILT: 0.8 ft bgs: silty brown loam ft: firm tan silt, some gravel 4.0/5 0 SILT: 9.0 ft: same as above 12.3 ft: tan f - m sand stiff tan silt 4.1/5 15 - 17 17.5 100 18 3 15 - 17: 11 - 17 17.5 100 18 3 CLAY: 20 - 25.0 ft: blue gray clay End of Boring @ 30.0 End of Boring @ 30.0	rive, Chelmsford MA 01824 10 - office me: Unitil - Rochester, NH

Located along C-C transect (GP-705 to GP-707) near northern slope of RR abutment

	Sample Collected	Comments: NR = No Recovery	
		ND = Non Detect	
	40 40	NA = Not Applicable due to Hand Clearing	
	16 - 18 thin horizon of OLM saturated material (17 - 17.7)	NM = Not Measured	
	over thick clay	Fill = brick/ceramic/coal/ash/wood fragments	
	•	SAA = Same As Above	
		F = Fine M = Medium C = Coarse S = Sand	l

_	AEC(Drive, Chelmsfo			GP	-907	
(978) 905-21						Page1 of1_
Project Na	ame: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush	Stick Up Height: 2'
Project Nu	umber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA
Date Start	ted Drilling:	12/4/20		Rig Type: Geoprobe	Pre Pack Filter Pack (bgs	s): NA
Date Finis	hed Drilling	:12/4/20		Date Pre-Cleared: N/A	Riser (bgs):	NA
Location:	Route 125, F	Rochester, NH	1	Water Level While Drilling (bgs): 16.5	Well Scrn: Depth (bgs):	NA
Logged B	y: C. Howe			Total Depth of Boring (bgs): 30.0	No wel	l installed.
	T	T	T			(Note: bgs = below ground surfa
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)			
0-5	2.9/5		0	CLAY, SILT and SAND: 0 - 1.0 ft bgs: clayey loam over firm olive gray clay 01.0 - 2.1 ft: medium brown fine sand and silt, some m - c 2.1 - 2.4 ft: olive-gray clay 3.4 ft: tan medium sand, some f sand and gravel	sand	
5-10	3.3/5		0	CLAY, SILT and SAND: 5 -5.5 ft bgs: same as above 8.9 ft:clay with layers of fine sand and silt, grading from tar	to medium brown at 8.4 ft	
10 - 15	2.9/5		0	SILT and SAND: 12.9 ft: same as above		
15 - 20	4.3/5		<2	SILT and SAND: 16.6 ft: light brown f - m sand ft: dark gray f - m sand and silt, loose, some roots sand and gravel (alluvium)		
20 - 25	4.8/5			SAND and GRAVEL: 20 - 20.6 ft: ft: medium to coarse sand, some fine sand 20.6 - 21.4 ft: dark gray sand and gravel (alluvium), some second 21.4 - 23.0 ft: alluvium, some sheen and OLM at 22 - 23 ft 23.0 - 24.8 ft: firm clay		
25 - 30	3.4/5			CLAY: 25 - 28.4 ft: firm gray clay		
	1			End of Boring @ 30.0 Refusal Not Encountered		

Ground surface approximately 14 feet above Cocheco River surface. between GP 906 (C-C) and GP-701 (D-D), closer to transect C-C, on top of RR abutment

Sample Collected	Comments: NR = No Recovery
	ND = Non Detect
	NA = Not Applicable due to Hand Clearing
21.5 - 23.5	NM = Not Measured
moderately impacted horizon	Fill = brick/ceramic/coal/ash/wood fragments
	SAA = Same As Above
	F = Fine, M = Medium, C = Coarse, S = Sand

$\Delta =$	(A	A
			71

GP-908

I -	60 Apollo Drive, Chelmsford MA 01824 78) 905-2100 - office Page1 of1						
Project Na	me: Unitil -	Rochester, N	Н	Drilling Company: New England Boring Contractors	Surface Comp: Flush		
Project Nu	ımber: 6013	9732		Drilling Method: Direct Push Technology	Bentonite (bgs):	NA NA	
Date Started Drilling: 12/4/20				Rig Type: Geoprobe	Pre Pack Filter Pack (bgs)	: NA	
Date Finis	hed Drilling	12/4/20		Date Pre-Cleared: N/A	Riser (bgs):	NA	
Location:	Route 125, F	Rochester, NI	1	Water Level While Drilling (bgs): 10.5	Well Scrn: Depth (bgs):	NA	
Logged By	y: C. Howe			Total Depth of Boring (bgs): 30.0	No well	installed.	
D 41-	1			1		(Note: bgs = below ground surface)	
Depth Range (feet)	Recovery (ft/ft)	PID Depth (feet)	10.6 PID (ppm)				
0-5	3.4/5		0	SILT and SAND: 0.3 ft bgs: silty loam ft: stiff, light brown silt, some gravel and fine sand tan fine sand, some silt			
5-10	3.9/5	5 7 8	2.3 0 0	SILT and SAND: 8.3 ft bgs: layers of light brown to tan silt and fine sand			
10 - 15	4.0/5		0	CLAY, SILT, SAND and GRAVEL: 10 - 10.4 ft: olive gray clay 10.4 - 11.5 ft: dark brown silty fine sand 11.5 - 12.3 ft: medium gray silt, some fine sand 12.3 - 13.5 gray sand and gravel, some silt 13.5 - 14.0 ft: clean gray fine sand			
15 - 20	4.5/5	17.3 - 18.6	20 - 70	CLAY, SILT, SAND and GRAVEL: 15 - 15.7 ft: silty brown clay 15.7 - 17.3 ft: medium brown silt, sand and gravel (alluvium) 17.3 - 18.3 ft: dark gray alluvium with sheen 18.3 - 18.6 ft: reddish brown alluvium, some OLM 18.6 - 19.5 ft: olive gray clay			
20 - 25	5.0/5	20 - 20.9	up to 127	CLAY, SILT, SAND and GRAVEL: 20 - 20.6 ft: ft: dark gray alluvium with sheen 20.6 - 20.9 ft: dark, reddish brown alluvium with some OLM 20.9 - 25.0 ft: stiff olive gray clay			
25 - 30	5.0/5		0	CLAY: 25 - 30.0 ft: same as above			
				End of Boring @ 30.0 Refusal Not Encountered			
				Ground surface approximately 10 feet above Cocheco River midway between GP-701 (D-D) and GP-907, near southern			
	Sample Collected Comments:						

19 - 21 Includes some impacted materials from above and below an intervening clay layer. Sample contained hydrophobic compounds, with reddish brown color travelling far up side of water preserved VOA vials.

NR = No Recovery

ND = Non Detect

NA = Not Applicable due to Hand Clearing

NM = Not Measured

Fill = brick/ceramic/coal/ash/wood fragments

SAA = Same As Above

F = Fine, M = Medium, C = Coarse, S = Sand

Appendix B Laboratory Analytical Reports

Unitil Service Corp. AECOM

V	Final Report
	Revised Report

Report Date: 27-Jul-20 15:52

Laboratory Report SC58689

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Unitil - Rochester, NH Project #: 60139732 T2600

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # RI907 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignes R Dun

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 15 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC58689

Project: Unitil - Rochester, NH

Project Number: 60139732 T2600

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC58689-01	GP-801(4-6)062620	Soil	26-Jun-20 08:53	29-Jun-20 18:51
SC58689-02	GP-803(3.4-5.4)062620	Soil	26-Jun-20 09:52	29-Jun-20 18:51
SC58689-03	GP-802(3.9-5.9)062620	Soil	26-Jun-20 11:15	29-Jun-20 18:51
SC58689-04	GP-709(20-22)062620	Soil	26-Jun-20 15:16	29-Jun-20 18:51
SC58689-05	GP-709(22-24)062620	Soil	26-Jun-20 15:33	29-Jun-20 18:51
SC58689-06	Trip Blank	Trip Blank	26-Jun-20 00:00	29-Jun-20 18:51

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Receipt

All VOC samples were frozen by client within 48 hours. SC58689-01 (480-171912-1), SC58689-02 (480-171912-2), SC58689-03 (480-171912-3), SC58689-04 (480-171912-4), SC58689-05 (480-171912-5) and SC58689-06 (480-171912-6)

GC/MS VOA

Method 8260C: The following samples were analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes: SC58689-04 (480-171912-4) and SC58689-05 (480-171912-5). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was analyzed using medium level soil analysis: SC58689-06 (480-171912-6).

Method 8260C: The following sample was analyzed using medium level soil analysis and diluted due to the nature of the sample matrix: (480-171872-A-1-A). Elevated reporting limits (RLs) are provided.

GC/MS Semi VOA

Method 8270D: The following samples were diluted due to color, appearance, and viscosity: SC58689-02 (480-171912-2) and SC58689-03 (480-171912-3). Elevated reporting limits (RL) are provided.

Method 8270D: The following sample required a dilution due to the nature of the sample matrix: SC58689-02 (480-171912-2). Because of

this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Samples:

SC58689-04 *GP-709(20-22)062620*

Result exceeded calibration range.

Naphthalene

SC58689-04RE01 *GP-709(20-22)062620*

Sample was prepped or analyzed beyond the specified holding time

Naphthalene

SC58689-05 *GP-709(22-24)062620*

SW846 8260C

Samples:

SC58689-05 *GP-709(22-24)062620*

Result exceeded calibration range.

Naphthalene

SC58689-05RE01 *GP-709(22-24)062620*

Sample was prepped or analyzed beyond the specified holding time

Naphthalene

SW846 8270D

Samples:

SC58689-01 *GP-801(4-6)062620*

Benzo (b&k) fluoranthene are unresolved due to matrix, result is reported as Benzo(b)fluoranthene.

Benzo[b]fluoranthene

Compound was found in the blank and sample.

Phenanthrene

SC58689-02 *GP-803(3.4-5.4)062620*

Compound was found in the blank and sample.

Phenanthrene

SC58689-03 *GP-802(3.9-5.9)062620*

Compound was found in the blank and sample.

Phenanthrene

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Unitil - Rochester, NH / 60139732 T2600

Work Order: SC58689
Sample(s) received on: 6/29/2020

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	res	110	IN/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	✓		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	\checkmark		

Summary of Hits

Lab ID:	SC58689-01	Client ID:	GP-801(4-6)062620
Lab ID:	303003-01	Cheft ID:	01-001(4-0)002020

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Benzo[a]anthracene	570		220	ug/kg	SW846 8270D
Benzo[a]pyrene	530		220	ug/kg	SW846 8270D
Benzo[b]fluoranthene	870	K	220	ug/kg	SW846 8270D
Benzo[g,h,i]perylene	460		220	ug/kg	SW846 8270D
Chrysene	680		220	ug/kg	SW846 8270D
Fluoranthene	960		220	ug/kg	SW846 8270D
Indeno[1,2,3-cd]pyrene	380		220	ug/kg	SW846 8270D
Phenanthrene	660	B.	220	ug/kg	SW846 8270D
Pyrene	1300		220	ug/kg	SW846 8270D
Lab ID: SC58689-02			Client ID: GP-803(3.4-	-5.4)062620	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Benzo[a]anthracene	8500		3900	ug/kg	SW846 8270D
Benzo[a]pyrene	6900		3900	ug/kg	SW846 8270D
Benzo[b]fluoranthene	12000		3900	ug/kg	SW846 8270D
Benzo[g,h,i]perylene	8800		3900	ug/kg	SW846 8270D
Benzo[k]fluoranthene	7400		3900	ug/kg	SW846 8270D
Chrysene	10000		3900	ug/kg	SW846 8270D
Fluoranthene	11000		3900	ug/kg	SW846 8270D
Indeno[1,2,3-cd]pyrene	7000		3900	ug/kg	SW846 8270D
Phenanthrene	4100	B.	3900	ug/kg	SW846 8270D
Pyrene	16000		3900	ug/kg	SW846 8270D
Lab ID: SC58689-03			Client ID: GP-802(3.9	-5.9)062620	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ethylbenzene	9.0		6.4	ug/kg	SW846 8260C
Anthracene	3100		2000	ug/kg	SW846 8270D
Benzo[a]anthracene	11000		2000	ug/kg	SW846 8270D
Benzo[a]pyrene	8700		2000	ug/kg	SW846 8270D
Benzo[b]fluoranthene	14000		2000	ug/kg	SW846 8270D
Benzo[g,h,i]perylene	10000		2000	ug/kg	SW846 8270D
Benzo[k]fluoranthene	5800		2000	ug/kg	SW846 8270D
Chrysene	13000		2000	ug/kg	SW846 8270D
Dibenz(a,h)anthracene	2300		2000	ug/kg	SW846 8270D
Fluoranthene	14000		2000	ug/kg	SW846 8270D
Indeno[1,2,3-cd]pyrene	7600		2000	ug/kg	SW846 8270D
Phenanthrene	4700	B.	2000	ug/kg	SW846 8270D
Pyrene	21000		2000	ug/kg	SW846 8270D
Lab ID: SC58689-04			Client ID: GP-709(20-	22)062620	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	540000	E.	1800	ug/kg	SW846 8260C
-				2 2	

27-Jul-20 15:52

Lab ID:	SC58689-04RE01	Client ID:	GP-709(20-22)062620

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	480000	Н	8800	ug/kg	SW846 8260C
Lab ID: SC58689-05			Client ID: GP-709(22)	2-24)062620	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	670000	E.	2100	ug/kg	SW846 8260C
Lab ID: SC58689-05RE01			Client ID: GP-709(22)	2-24)062620	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	860000	Н	10000	ug/kg	SW846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

-	<u>lentification</u> 1-6)062620 -01				Project # 52 T2600		<u>Matrix</u> Soil	Collection Date/Time 26-Jun-20 08:53			Received 29-Jun-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Subcontra	acted Analyses												
	acted Analyses by method 5035FP_Calc	<u>i</u>											
Analysis p	erformed by Eurofins TestAn	nerica - Buffalo	o - 2337										
71-43-2	Benzene	< 8.3		ug/kg	8.3	0.41	1	SW846 8260C	02-Jul-20 11:00	02-Jul-20 13:45	2337	539106	
100-41-4	Ethylbenzene	< 8.3		ug/kg	8.3	0.57	1	"	II .	u u	"	"	
179601-23-1	m-Xylene & p-Xylene	< 17		ug/kg	17	1.4	1	"	II .	u u	"	"	
95-47-6	o-Xylene	< 8.3		ug/kg	8.3	1.1	1	"	n n	"	"	"	
108-88-3	Toluene	< 8.3		ug/kg	8.3	0.63	1	"	"	"	"	"	
	Total BTEX	< 17		ug/kg	17	8.3	1	"	"	"	•	"	
1330-20-7	Xylenes, Total	< 17		ug/kg	17	1.4	1	"	"	"	"	"	
Surrogate	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100			64-12	?6 %		n .	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	100			72-12	26 %		n .	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	104			60-14	10 %		"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	99			71-12	25 %			"	u u	"	"	
	acted Analyses by method 3550C												
Analysis p	erformed by Eurofins TestAn	nerica - Buffalo	o - 2337										
91-57-6	2-Methylnaphthalene	< 220		ug/kg	220	44	1	SW846 8270D	06-Jul-20 08:14	06-Jul-20 20:26	2337	539236	
83-32-9	Acenaphthene	< 220		ug/kg	220	32	1	"	"	u	"	"	
208-96-8	Acenaphthylene	< 220		ug/kg	220	29	1	"	"	"	•	"	
120-12-7	Anthracene	< 220		ug/kg	220	55	1	"	"	"	•	"	
56-55-3	Benzo[a]anthracene	570		ug/kg	220	22	1	"	"	"	•	"	
50-32-8	Benzo[a]pyrene	530		ug/kg	220	32	1		"	u	"	"	
205-99-2	Benzo[b]fluoranthene	870	K	ug/kg	220	35	1	"	"	"	•	"	
191-24-2	Benzo[g,h,i]perylene	460		ug/kg	220	23	1	"	"	"	•	"	
207-08-9	Benzo[k]fluoranthene	< 220		ug/kg	220	29	1		"	u	"	"	
218-01-9	Chrysene	680		ug/kg	220	49	1	"	u u	"	"	"	
53-70-3	Dibenz(a,h)anthracene	< 220		ug/kg	220	39	1	"	u u	"	"	"	
206-44-0	Fluoranthene	960		ug/kg	220	23	1	"	"	"	"	"	
36-73-7	Fluorene	< 220		ug/kg	220	26	1	"	"	"	"	"	
193-39-5	Indeno[1,2,3-cd]pyrene	380		ug/kg	220	27	1	"	"	"	"	"	
91-20-3	Naphthalene	< 220		ug/kg	220	29	1	"	"	"	"		
85-01-8	Phenanthrene	660	B.	ug/kg	220	32	1	"		•	"	"	
129-00-0	Pyrene	1,300		ug/kg	220	26	1	"	"	"	"	"	
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	94			60-12	20 %		"	"		"	"	
4165-60-0	Nitrobenzene-d5 (Surr)	89			53-12			"		"	"	"	
	()			53-120 %									

79-130 %

27-Jul-20 15:52 Page 8 of 15

1718-51-0 p-Terphenyl-d14 (Surr)

108

	lentification .4-5.4)062620				Project # 32 T2600		<u>Matrix</u> Soil		ection Date 5-Jun-20 09		Received 29-Jun-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ce
Subcontra	cted Analyses												
Subcontra	acted Analyses by method 5035FP Calc	i											
Analysis pe	erformed by Eurofins TestAn	ierica - Buffalo	- 2337										
71-43-2	Benzene	< 8.3		ug/kg	8.3	0.41	1	SW846 8260C	02-Jul-20 11:00	02-Jul-20 14:11	2337	539106	
100-41-4	Ethylbenzene	< 8.3		ug/kg	8.3	0.57	1		"	"	"	"	
179601-23-1	m-Xylene & p-Xylene	< 17		ug/kg	17	1.4	1		"	"	"	"	
95-47-6	o-Xylene	< 8.3		ug/kg	8.3	1.1	1		"	"	"	"	
108-88-3	Toluene	< 8.3		ug/kg	8.3	0.63	1	"	u u	"	"	"	
	Total BTEX	< 17		ug/kg	17	8.3	1	"	"	"	"	"	
1330-20-7	Xylenes, Total	< 17		ug/kg	17	1.4	1	"	"	"	"	"	
Surrogate r	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101			64-12	6 %		"	II	"	"	"	
160-00-4	4-Bromofluorobenzene (Surr)	98			72-12	6 %		n .	"	"	"	"	
868-53-7	Dibromofluoromethane (Surr)	108			60-14	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	101			71-12	5 %		"	"	"	"		
Prepared	acted Analyses by method 3550C												
	erformed by Eurofins TestAn		- 2337	_									
91-57-6	2-Methylnaphthalene	< 3900		ug/kg	3900	770	20	SW846 8270D	06-Jul-20 08:14	06-Jul-20 20:50	2337	539236	
33-32-9	Acenaphthene	< 3900		ug/kg	3900	570	20	"	u u	"	"	"	
208-96-8	Acenaphthylene	< 3900		ug/kg	3900	500	20	"	"	"	"	"	
20-12-7	Anthracene	< 3900		ug/kg	3900	960	20	"	u u	"	"	"	
56-55-3	Benzo[a]anthracene	8,500		ug/kg	3900	390	20	"	"	"	"	"	
50-32-8	Benzo[a]pyrene	6,900		ug/kg	3900	570	20	"	"	"	"	"	
205-99-2	Benzo[b]fluoranthene	12,000		ug/kg	3900	620	20	"	"	"	"	"	
91-24-2	Benzo[g,h,i]perylene	8,800		ug/kg	3900	410	20	"	"	"	"	"	
207-08-9	Benzo[k]fluoranthene	7,400		ug/kg	3900	500	20		"	"	"	"	
218-01-9	Chrysene	10,000		ug/kg	3900	870	20		"	"	"	"	
3-70-3	Dibenz(a,h)anthracene	< 3900		ug/kg	3900	680	20	"	n n	"	"	"	
206-44-0	Fluoranthene	11,000		ug/kg	3900	410	20	"	"	"	"		
6-73-7	Fluorene	< 3900		ug/kg	3900	460	20	"	"	"	"		
93-39-5	Indeno[1,2,3-cd]pyrene	7,000		ug/kg	3900	480	20	"	"	"	"		
1-20-3	Naphthalene	< 3900		ug/kg	3900	500	20	"	"		"		
35-01-8	Phenanthrene	4,100	B.	ug/kg	3900	570	20			"	"	"	
129-00-0	Pyrene	16,000		ug/kg	3900	460	20	"		"	"		
Surrogate r	<u> </u>	-											
321-60-8	2-Fluorobiphenyl	67			60-12	0 %				"	"	"	
4165-60-0	Nitrobenzene-d5 (Surr)	56			53-12			"	"		"		
	OSSIZSIIS GO (GGII)	55			00-12	- /0							

79-130 %

27-Jul-20 15:52 Page 9 of 15

1718-51-0

p-Terphenyl-d14 (Surr)

103

60-120 %

53-120 %

79-130 %

27-Jul-20 15:52 Page 10 of 15

Surrogate recoveries:

2-Fluorobiphenyl

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

87

75

96

321-60-8

4165-60-0

1718-51-0

<u>Sample Identification</u> GP-709(20-22)062620 SC58689-04			Client Project # 60139732 T2600			Matrix Collection Date/Time Soil 26-Jun-20 15:16			Received 29-Jun-20				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
	cted Analyses												
Prepared	by method 5035FM_Cald	2											
Analysis pe	rformed by Eurofins TestAn	ıerica - Buffalo	- 2337										
71-43-2	Benzene	< 1800		ug/kg	1800	330	40	SW846 8260C	02-Jul-20 13:23	06-Jul-20 12:26	2337	539118	
91-20-3	Naphthalene	540,000	E.	ug/kg	1800	590	40	"	"	"	"	"	
Surrogate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95			53-14	16 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	103			49-14	18 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	102			60-14	10 %		"	"	u	"	"	
2037-26-5	Toluene-d8 (Surr)	99			50-14	19 %		"	"	"	"	"	
	is of Subcontracted Anal												
Prepared	by method 5035FM_Cald	2											
91-20-3	Naphthalene	480,000	Н	ug/kg	8800	3000	200	SW846 8260C	02-Jul-20 13:23	23-Jul-20 14:15	2337	539118	
Surrogate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107			53-14	16 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	100			49-14	18 %		"	"	u	"	"	
1868-53-7	Dibromofluoromethane (Surr)	105			60-14	10 %		"	"	u	"	"	
2037-26-5	Toluene-d8 (Surr)	102			50-14	19 %		"	"	"	"	"	

27-Jul-20 15:52

-	entification 2-24)062620 05			<u>Client Project #</u> 60139732 T2600			<u>Matrix</u> Soil	<u>Colle</u> 26	Received 29-Jun-20				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontrac	cted Analyses												
	<u>cted Analyses</u> by method 5035FM_Calc	i											
Analysis pe	rformed by Eurofins TestAm	erica - Buffalo	- 2337										
71-43-2	Benzene	< 2100		ug/kg	2100	400	40	SW846 8260C	02-Jul-20 13:23	06-Jul-20 12:49	2337	539118	
91-20-3	Naphthalene	670,000	E.	ug/kg	2100	710	40	"	"	"	"	"	
Surrogate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92			53-14	6 %		n .	"	"	"	u	
460-00-4	4-Bromofluorobenzene (Surr)	103			49-14	8 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	96			60-14	0 %		"	u u	"	"	u	
2037-26-5	Toluene-d8 (Surr)	98			50-14	9 %		"	"	"	"	"	
Re-analys	is of Subcontracted Analy	/ses											
	by method 5035FM_Calc												
91-20-3	Naphthalene	860,000	Н	ug/kg	10000	3500	200	SW846 8260C	02-Jul-20 13:23	23-Jul-20 14:38	2337	539118	
Surrogate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98			53-14	6 %		n .	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	100			49-14	8 %		"	"	"	"	u	
1868-53-7	Dibromofluoromethane (Surr)	100			60-14	0 %		"	"	"	"	u	
2037-26-5	Toluene-d8 (Surr)	103			50-14	9 %		"	"	"	"	"	
Sample Id	entification												
Trip Blan	<u></u>			Client P	-		<u>Matrix</u>	·	ection Date			<u>ceived</u>	
SC58689-				6013973	2 T2600		Trip Blar	nk 26	5-Jun-20 00	:00	29	Jun-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	cted Analyses												
	by method 5035FM_Calc												
, ,	rformed by Eurofins TestAm	erica - Buffalo	- 2337										
71-43-2	Benzene	< 150		ug/kg	150	29	1	SW846 8260C	02-Jul-20 13:23	06-Jul-20 11:17	2337	539118	
91-20-3	Naphthalene	< 150		ug/kg	150	51	1	"	"	"	"	"	
Surrogate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93			53-14	6 %		n .	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	105		49-148 %				н	"	"	"	u	
1868-53-7	Dibromofluoromethane (Surr)	92		60-140 %				"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	103		50-149 %				"	"	"	"	"	

Subcontracted Analyses - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 539106 - 5035LP_Calc										
 LCS (5391061AQ)					Pre	epared & Ar	nalyzed: 02-	-Jul-20		
Toluene	51.7		ug/kg	5.0	50.0	-	103	74-128		
o-Xylene	49.9		ug/kg	5.0	50.0		100	70-130		
Benzene	54.7		ug/kg	5.0	50.0		109	79-127		
m-Xylene & p-Xylene	52.4		ug/kg	10	50.0		105	70-130		
Ethylbenzene	52.7		ug/kg	5.0	50.0		105	80-120		
Surrogate: Toluene-d8 (Surr)	48.7		ug/kg		50.0		97	71-125		
Surrogate: Dibromofluoromethane (Surr)	52.5		ug/kg		50.0		105	60-140		
Surrogate: 4-Bromofluorobenzene (Surr)	53.1		ug/kg		50.0		106	72-126		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	50.7		ug/kg		50.0		101	64-126		
LCS Dup (5391062AY)			Source: 53	9106140		epared & Ar				
Toluene	52.8		ug/kg	5.0	50.0	51.7	106	74-128	2	20
Benzene	56.7			5.0	50.0	54.7	113	74-120 79-127	4	20
Ethylbenzene	56.7 53.5		ug/kg ug/kg	5.0	50.0	54.7 52.7	107	79-127 80-120	1	20
m-Xylene & p-Xylene				10	50.0	52. <i>1</i> 52.4	107	70-130	0	20
o-Xylene	52.6 50.8		ug/kg	5.0	50.0	49.9	105	70-130 70-130	2	20
	50.8		ug/kg	5.0		49.9				
Surrogate: Toluene-d8 (Surr)	49.1		ug/kg		50.0		98	71-125		
Surrogate: 4-Bromofluorobenzene (Surr)	53.9		ug/kg		50.0		108	72-126		
Surrogate: Dibromofluoromethane (Surr)	53.0		ug/kg		50.0		106	60-140		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	48.6		ug/kg		50.0		97	64-126		
Blank (5391063AB)					Pre	epared & Ar	nalyzed: 02-	-Jul-20		
Toluene	< 5.0		ug/kg	5.0				-		
Xylenes, Total	< 10		ug/kg	10				-		
Total BTEX	< 10		ug/kg	10				-		
o-Xylene	< 5.0		ug/kg	5.0				-		
m-Xylene & p-Xylene	< 10		ug/kg	10				-		
Ethylbenzene	< 5.0		ug/kg	5.0				-		
Benzene	< 5.0		ug/kg	5.0				-		
Surrogate: Dibromofluoromethane (Surr)	53.2		ug/kg		50.0		106	60-140		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	51.7		ug/kg		50.0		103	64-126		
Surrogate: 4-Bromofluorobenzene (Surr)	52.1		ug/kg		50.0		104	72-126		
Surrogate: Toluene-d8 (Surr)	47.6		ug/kg		50.0		95	71-125		
atch 539118 - 5035A_M_Calc										
LCS (5391181AQ)					Pre	epared: 02-	Jul-20 Ana	ılyzed: 06-Ju	<u>l-20</u>	
Naphthalene	2110		ug/kg	100	2500		85	65-142		
Benzene	2400		ug/kg	100	2500		96	77-125		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	2470		ug/kg		2500		99	53-146		
Surrogate: 4-Bromofluorobenzene (Surr)	2770		ug/kg		2500		111	49-148		
Surrogate: Dibromofluoromethane (Surr)	2650		ug/kg		2500		106	60-140		
Surrogate: Toluene-d8 (Surr)	2630		ug/kg		2500		105	50-149		
Blank (5391182AB)					Pre	epared: 02-	Jul-20 Ana	ılyzed: 06-Ju	I-20	
Naphthalene	< 100		ug/kg	100				-		
Benzene	< 100		ug/kg	100				-		
Surrogate: Dibromofluoromethane (Surr)	2440		ug/kg		2500		97	60-140		
Surrogate: 4-Bromofluorobenzene (Surr)	2660		ug/kg		2500		106	49-148		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	2260		ug/kg		2500		90	53-146		
= ' '					2500		103	50-149		
Surrogate: Toluene-d8 (Surr)	2570		ug/kg		2300		100	30-149		

Subcontracted Analyses - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8270D										
Batch 539236 - 3550C										
Blank (5392361AB)					Pre	enared & Ar	nalyzed: 06-	. Jul-20		
Fluoranthene	< 170		ug/kg	170	1.10	spared w/ti	laryzca. 00	-		
Anthracene	< 170		ug/kg	170				_		
Chrysene	< 170		ug/kg	170				_		
Benzo[k]fluoranthene	< 170		ug/kg	170				_		
Benzo[g,h,i]perylene	< 170		ug/kg	170				_		
Benzo[b]fluoranthene	< 170		ug/kg	170				_		
Dibenz(a,h)anthracene	< 170		ug/kg	170				_		
Fluorene	< 170		ug/kg	170				_		
Indeno[1,2,3-cd]pyrene	< 170		ug/kg	170				_		
Naphthalene	< 170		ug/kg	170				_		
Phenanthrene	< 170		ug/kg	170				_		
Benzo[a]anthracene	< 170		ug/kg	170				_		
Pyrene	< 170		ug/kg	170				_		
2-Methylnaphthalene	< 170		ug/kg	170						
Acenaphthene	< 170		ug/kg	170						
Acenaphthylene	< 170		ug/kg ug/kg	170				-		
Benzo[a]pyrene	< 170		ug/kg ug/kg	170				-		
				170						
Surrogate: 2-Fluorobiphenyl	1280		ug/kg		1330		96	60-120		
Surrogate: Nitrobenzene-d5 (Surr)	1180		ug/kg		1330		88	53-120		
Surrogate: p-Terphenyl-d14 (Surr)	1610		ug/kg		1330		121	79-130		
LCS (5392362AQ)					Pre	epared & Ar	nalyzed: 06-	Jul-20		
Fluoranthene	1780		ug/kg	170	1660		107	62-120		
2-Methylnaphthalene	1490		ug/kg	170	1660		90	59-120		
Pyrene	1940		ug/kg	170	1660		117	61-133		
Acenaphthene	1590		ug/kg	170	1660		96	62-120		
Acenaphthylene	1710		ug/kg	170	1660		103	58-121		
Anthracene	1780		ug/kg	170	1660		107	62-120		
Benzo[a]anthracene	1890		ug/kg	170	1660		114	65-120		
Benzo[a]pyrene	1910		ug/kg	170	1660		115	64-120		
Indeno[1,2,3-cd]pyrene	1950		ug/kg	170	1660		118	56-134		
Benzo[g,h,i]perylene	1990		ug/kg	170	1660		120	45-145		
Phenanthrene	1800		ug/kg	170	1660		109	60-120		
Chrysene	1930		ug/kg	170	1660		116	64-120		
Dibenz(a,h)anthracene	2010		ug/kg	170	1660		121	54-132		
Fluorene	1780		ug/kg	170	1660		107	63-120		
Benzo[k]fluoranthene	1960		ug/kg	170	1660		118	65-120		
Naphthalene	1340		ug/kg	170	1660		81	55-120		
Benzo[b]fluoranthene	1880		ug/kg	170	1660		113	64-120		
Surrogate: Nitrobenzene-d5 (Surr)	1090		ug/kg		1330		82	53-120		
Surrogate: p-Terphenyl-d14 (Surr)	1680		ug/kg		1330		127	79-130		
Surrogate: 2-Fluorobiphenyl	1220		ug/kg		1330		92	60-120		

Notes and Definitions

- B. Compound was found in the blank and sample.
- E. Result exceeded calibration range.
- H Sample was prepped or analyzed beyond the specified holding time
- K Benzo (b&k) fluoranthene are unresolved due to matrix, result is reported as Benzo(b)fluoranthene.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

27-Jul-20 15:52 Page 15 of 15

		<u></u>	T ~ T									
DI VOA Frozen	betrigerated b	ool noidmA	7 _{# 01 81}		1			1		0		
Present Intact Broken	: Custody Seals:	Condition upon receipt	· E'	9:81	06/20	19	J.			Jus	1	
			Corrected	-10h 60	27150	19		200	WO	DAH Sih	1001 450C	
			Goracemon Pasior	3180	ONLE	10) 1	mail 5	VIRON 1990	WEA	HOME +	2010	
	1	EDD format:	Орзеглед	1	90	7 11	17 N C/A			/	13 /	
	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	O° qmaT	:əmiT	Date:		i.vq	Received		dnished by:	Relin	
]											
]											
,31]							2 3			A	
no blan salgmiss									Lank	200	90/1	
weekend. Oller					3	05	2551	08/98/9	CEDEDO (HE-	ex) 60L-89	20-	
were Passa over the				11	٤	05 6		0e/9ep	CERESO (VE			
manage Diviels	jen,		XX		1 8	QS .	9 5111	08/98/9	0222065-6		and the second s	
Amen Symps Surband	5/2/20	97	XX	- 30 - 4	1 8	OS G	7560	08/98/9	060600 (P.2-1	LE) 208-93	70-1	
thw sipt mudial			$\times \times$		1 2	05 0	2580	08/98/9	C) 063630	-H) 108-17	0-689893	
Other: State-specific reporting standards:		SW S	NA PA	# of Clear (# of VOA V	Matrix	зэшіТ	Date:	ıple ID:	neS	Lab ID:	
The TIR TIRE TIRE TO QC The TIRE TIRE TIRE TIRE TIRE TIRE TIRE TIRE		15001		# of Clear Glass	# of VOA Vials	rix e		C=Compsite		G=Grab)	
*AQQ		Sacos lear	82605	llass	/ials Glass			=£X	=7X		=IX	
		500	0 8					SG=Soil Gas	A=Indoor/Ambient Air	SL=Sludge	lio2=O2 liO=O	
C.I. Dhe RCP Report? Ves No MA DEP MCP CAM Report? Ves No	,	sisylanA		sasiners)			Vater WW=Was	Water SW=Surface W	CW=Groundw	DW=Drinking Water	
QA/QC Reporting Notes: * additional charges may appply			6 4	5	Cuza Suza	NY = SI	77	=11	Water 10=H ₂ PO ₄	SO ₄ 9≡Deionized	7=CH3OH 8=NaH5	
	below:		1	y	3 m2°	bit	A oidroosA=0 I	HOPN=\$ ENH				
2110	4.5484E. 5	Sampler(s):		Quote #:			P.O No.:		VATE SIN	V LOYA)	Telephone #: Project Mgr:	
State:	Jesopo-1	Location:					_		L951- E	(978 (8TP)		
T Kodote	LITAM	Site Name:				767			34,0	cylogA c	se.	
000e1 75	2162109	Project No:					Invoice To:		Ubyv	110 (all a		
d after 30 days unless otherwise instructed.	Samples dispose		J							" ,		
to laboratory approval ication needed for rushes					lo	Page		р	New Englan			
	asd - TAT dauA		COED	ODK BE	COST	OE	CHAIL		Environment			
ecial Handling: 7 to 10 business days										suito	nə 👯	
mailhan H Iging	O										9.0	

Batch Summary

539106

Subcontracted Analyses

5391061AQ

5391062AY

5391063AB

SC58689-01 (GP-801(4-6)062620)

SC58689-02 (GP-803(3.4-5.4)062620)

SC58689-03 (GP-802(3.9-5.9)062620)

<u>539118</u>

Subcontracted Analyses

5391181AQ

5391182AB

SC58689-04 (GP-709(20-22)062620)

SC58689-04RE01 (GP-709(20-22)062620)

SC58689-05 (GP-709(22-24)062620)

SC58689-05RE01 (GP-709(22-24)062620)

SC58689-06 (Trip Blank)

539236

Subcontracted Analyses

5392361AB

5392362AQ

SC58689-01 (GP-801(4-6)062620)

SC58689-02 (GP-803(3.4-5.4)062620)

SC58689-03 (GP-802(3.9-5.9)062620)

V	Final Report
	Revised Report

Report Date: 14-Jul-20 16:03

Laboratory Report SC58771

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Unitil - Rochester, NH Project #: 60139732 T2600

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # RI907 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignes R Dun

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC58771

Project: Unitil - Rochester, NH

Project Number: 60139732 T2600

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC58771-01	GP-706(21.5-23.5)_070120	Soil	01-Jul-20 11:15	07-Jul-20 17:00
SC58771-02	GP-701(9-11)_070120	Soil	01-Jul-20 15:00	07-Jul-20 17:00
SC58771-03	GP-705(20-22)_070120	Soil	01-Jul-20 12:50	07-Jul-20 17:00
SC58771-04	GP-713(16-18)_063020	Soil	30-Jun-20 09:45	07-Jul-20 17:00
SC58771-05	GP-711(10-12)_063020	Soil	30-Jun-20 11:30	07-Jul-20 17:00
SC58771-06	GP-710(20-22)_063020	Soil	30-Jun-20 14:40	07-Jul-20 17:00
SC58771-07	GP-707(26.8-28.8)_070120	Soil	01-Jul-20 10:00	07-Jul-20 17:00
SC58771-08	GP-704(25.2-27.2)_070220	Soil	02-Jul-20 11:45	07-Jul-20 17:00
SC58771-09	GP-702(16-18)_070220	Soil	02-Jul-20 09:40	07-Jul-20 17:00
SC58771-10	GP-703(22-24)_070220	Soil	02-Jul-20 10:30	07-Jul-20 17:00
SC58771-11	GP-702(10-12)_070220	Soil	02-Jul-20 08:30	07-Jul-20 17:00
SC58771-12	GP-712(20-22)_062920	Soil	29-Jun-20 14:30	07-Jul-20 17:00
SC58771-13	GP-708(21.7-23.7)_062920	Soil	29-Jun-20 10:57	07-Jul-20 17:00
SC58771-14	GP-708(11.9-13.9)_062920	Soil	29-Jun-20 10:26	07-Jul-20 17:00
SC58771-15	Trip Blank	Trip Blank	29-Jun-20 00:00	07-Jul-20 17:00

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

GC/MS VOA

Method 8260C: The following samples were analyzed using medium level soil analysis and diluted to bring the concentration of target analytes within the calibration range: SC58771-01 (480-172087-1), SC58771-02 (480-172087-2), SC58771-03 (480-172087-3), SC58771-05 (480-172087-5), SC58771-06 (480-172087-6), SC58771-10 (480-172087-10), SC58771-11 (480-172087-11), SC58771-12 (480-172087-12), SC58771-13 (480-172087-13) and SC58771-14 (480-172087-14). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was analyzed using medium level soil analysis and diluted due to the nature of the sample matrix: SC58771-04 (480-172087-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was analyzed using medium level soil analysis to bring the concentration of target analytes within the calibration range: SC58771-09 (480-172087-9). Elevated reporting limits (RLs) are provided.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

14-Jul-20 16:03 Page 3 of 16

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Unitil - Rochester, NH / 60139732 T2600
Words Ondon	CC59771

Work Order: SC58771 Sample(s) received on: 7/7/2020

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	✓		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		\checkmark	
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	$\overline{}$	П	

Summary of Hits

	0.050551 01			GD 704(01.5	. 22 5) 0501	20
Lab ID:	SC58771-01			Client ID: GP-706(21.5	-	
Parameter			Flag	Reporting Limit	Units	Analytical Method
Naphthalene		1700000		41000	ug/kg	SW846 8260C
Lab ID:	SC58771-02			Client ID: GP-701(9-11)_070120	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		650000		31000	ug/kg	SW846 8260C
Lab ID:	SC58771-03			Client ID: GP-705(20-2	22)_070120	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		91000		3100	ug/kg	SW846 8260C
Lab ID:	SC58771-04			Client ID: GP-713(16-1	18)_063020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		4000		810	ug/kg	SW846 8260C
Lab ID:	SC58771-05			Client ID: GP-711(10-1	12) 063020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		60000		2100	ug/kg	SW846 8260C
Lab ID:	SC58771-06			Client ID: GP-710(20-2	22)_063020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		750000		19000	ug/kg	SW846 8260C
Lab ID:	SC58771-07			Client ID: GP-707(26.8	3-28.8) 0701	20
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		76		3.1	ug/kg	SW846 8260C
Lab ID:	SC58771-08			Client ID: GP-704(25.2	2-27.2) 0702	20
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		8.1	8	3.3	ug/kg	SW846 8260C
Lab ID:	SC58771-09			Client ID: GP-702(16-1	18) 070220	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		2100	8	46	ug/kg	SW846 8260C
Lab ID:	SC58771-10			Client ID: GP-703(22-2		
	50.507/1-10	Dogult	Dla -	•	<i>'</i> —	Analytical M-41 J
Parameter Numbers			Flag	Reporting Limit	Units	Analytical Method
Naphthalene		200000		8500	ug/kg	SW846 8260C
Lab ID:	SC58771-11			Client ID: GP-702(10-1	12)_070220	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		38000		1800	ug/kg	SW846 8260C

14-Jul-20 16:03 Page 5 of 16

Lab ID:	SC58771-12	Client ID:	GP-712(20-22)	_062920
---------	------------	------------	---------------	---------

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	1100000		37000	ug/kg	SW846 8260C
Lab ID: SC58771-13			Client ID: GP-708(21.7-23.7)_062	2920
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	1600000		36000	ug/kg	SW846 8260C
Lab ID: SC58771-14			Client ID: GP-708([11.9-13.9)_062	2920
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	1500000		41000	ug/kg	SW846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

GP-706(2	AS No. Analyte(s) Result Flag				Project # 32 T2600		<u>Matrix</u> Soil	<u></u>	ection Date I-Jul-20 11		Received 07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FM_Calc	2											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo -	2337										
71-43-2	Benzene	< 41000		ug/kg	41000	7900	1000	SW846 8260C	09-Jul-20 10:29	10-Jul-20 13:29	2337	539806	
91-20-3	Naphthalene	1,700,000		ug/kg	41000	14000	1000	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100			53-14	16 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	101			49-14	18 %		n .	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	100			60-14	10 %		"	"	"	"	u	
2037-26-5	Toluene-d8 (Surr)	97			50-14	19 %		"	"	"	"	"	
G 1 I	1												
	lentification_			Client I	Project #		Matrix	Colle	ection Date	/Time	Red	ceived	
	P-11)_070120			6013973	32 T2600		Soil	01	l-Jul-20 15	:00	07-	Jul-20	
SC58771-	-02												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FM_Calc	2											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo -	2337										
71-43-2	Benzene	< 31000		ug/kg	31000	5800	800	SW846 8260C	09-Jul-20 10:29	10-Jul-20 13:52	2337	539806	
91-20-3	Naphthalene	650,000		ug/kg	31000	10000	800	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95			53-14	16 %		"	"	"	"	u	
460-00-4	4-Bromofluorobenzene (Surr)	102			49-14	18 %		n	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	100			60-14	10 %		"	"	"	"	"	

Toluene-d8 (Surr)

98

2037-26-5

-	ample Identification GP-705(20-22)_070120 C58771_03				<u>Client Project #</u> 60139732 T2600		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date		ne Received 07-Jul-20		
SC58771-	-03			6013973	2 12600		Soil	01	l-Jul-20 12	:50	07-	Jul-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FM_Calc	2											
Analysis pe	erformed by Eurofins TestAn	ierica - Buffalo	- 2337										
71-43-2	Benzene	< 3100		ug/kg	3100	600	80	SW846 8260C	09-Jul-20 10:29	10-Jul-20 14:15	2337	539806	
91-20-3	Naphthalene	91,000		ug/kg	3100	1100	80	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98			53-14	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	104			49-14	8 %		"	"	"	n .	"	
1868-53-7	Dibromofluoromethane (Surr)	98			60-14	0 %		u	"	"	"	u	
2037-26-5	Toluene-d8 (Surr)	98			50-14	9 %		"	"	u	"	"	
	lentification												
GP-713(1 SC58771-	.6-18)_063020 -04			Client P 6013973			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 0-Jun-20 09			Jul-20	
	· -	Result	Flag			MDL	·	· · · · · · · · · · · · · · · · · · ·)-Jun-20 09		07-	Jul-20	Cert.
SC58771- CAS No.	-04 Analyte(s)	Result	Flag	6013973	2 T2600	MDL	Soil	30)-Jun-20 09	:45	07-	Jul-20	Cert
SC58771- CAS No. Subcontra Subcontra	-04		Flag	6013973	2 T2600	MDL	Soil	30)-Jun-20 09	:45	07-	Jul-20	Cert
SC58771- CAS No. Subcontra Subcontra Prepared	Analyte(s) acted Analyses acted Analyses	2		6013973	2 T2600	MDL	Soil	30)-Jun-20 09	:45	07-	Jul-20	Cert
SC58771- CAS No. Subcontra Subcontra Prepared	Analyte(s) acted Analyses acted Analyses by method 5035FM Calc	2		6013973	2 T2600	<i>MDL</i> 150	Soil	30)-Jun-20 09	:45	07-	Jul-20	Cert
SC58771- CAS No. Subcontra Subcontra Prepared Analysis per	Analyte(s) acted Analyses acted Analyses by method 5035FM_Calc erformed by Eurofins TestAn	2 nerica - Buffalo		6013973 <i>Units</i>	2 T2600 *RDL		Soil Dilution	Method Ref.	Prepared 09-Jul-20	:45 Analyzed 10-Jul-20	07-	Jul-20 Batch	Cert
SC58771- CAS No. Subcontra Subcontra Prepared Analysis per 71-43-2	Analyte(s) acted Analyses acted Analyses by method 5035FM Calc erformed by Eurofins TestAn Benzene Naphthalene	<u>2</u> nerica - Buffalo < 810		6013973 <i>Units</i> ug/kg	2 T2600 *RDL	150	Soil Dilution 20	30 Method Ref. SW846 8260C	Prepared 09-Jul-20 10:29	:45 Analyzed 10-Jul-20 14:38	07- <i>Analyst</i> 2337	Jul-20 <i>Batch</i> 539806	Cert
SC58771- CAS No. Subcontra Subcontra Prepared Analysis per 71-43-2 91-20-3 Surrogate in	Analyte(s) acted Analyses acted Analyses by method 5035FM Calc erformed by Eurofins TestAn Benzene Naphthalene	<u>2</u> nerica - Buffalo < 810		6013973 <i>Units</i> ug/kg	2 T2600 *RDL	150 270	Soil Dilution 20	30 Method Ref. SW846 8260C	Prepared 09-Jul-20 10:29	:45 Analyzed 10-Jul-20 14:38	07- <i>Analyst</i> 2337	Jul-20 <i>Batch</i> 539806	Cert
SC58771- CAS No. Subcontra Subcontra Prepared Analysis per 71-43-2 91-20-3 Surrogate in	Analyte(s) acted Analyses acted Analyses by method 5035FM Calcerformed by Eurofins TestAn Benzene Naphthalene recoveries: 1,2-Dichloroethane-d4	2 nerica - Buffalo < 810 4,000		6013973 <i>Units</i> ug/kg	*RDL 810 810	150 270 6 %	Soil Dilution 20	30 Method Ref. SW846 8260C	Prepared 09-Jul-20 10:29	:45 Analyzed 10-Jul-20 14:38	07- <i>Analyst</i> 2337	Jul-20 <i>Batch</i> 539806	Cert
SC58771- CAS No. Subcontra Subcontra Prepared Analysis pe 71-43-2 91-20-3 Surrogate ii 17060-07-0	Analyte(s) acted Analyses acted Analyses by method 5035FM Calcerformed by Eurofins TestAn Benzene Naphthalene recoveries: 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene	2 nerica - Buffalo < 810 4,000		6013973 <i>Units</i> ug/kg	2 T2600 *RDL 810 810 53-14	150 270 6 % 8 %	Soil Dilution 20	30 Method Ref. SW846 8260C	Prepared 09-Jul-20 10:29	:45 Analyzed 10-Jul-20 14:38	07- <i>Analyst</i> 2337	Jul-20 <i>Batch</i> 539806	Cert.

14-Jul-20 16:03 Page 8 of 16

Sample Identification GP-711(10-12)_063020				Client I	Project #		<u>Matrix</u>	<u>Coll</u>	ection Date	/Time	Received		
GP-711(1 SC58771-				6013973	32 T2600		Soil	30)-Jun-20 11	:30	07-	Jul-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FM_Calc	2											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo	- 2337										
71-43-2	Benzene	< 2100		ug/kg	2100	400	40	SW846 8260C	09-Jul-20 10:29	10-Jul-20 15:01	2337	539806	
91-20-3	Naphthalene	60,000		ug/kg	2100	710	40	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97			53-14	6 %		"	u	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	105			49-14	8 %		"	n	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	101		60-140 %				"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	97			50-14	9 %		"	"	"	"	"	
Sample Id	lentification												
-	0-22) 063020			Client I	Project #		Matrix	Coll	ection Date	:/Time	Red	<u>ceived</u>	
SC58771-	7 =			6013973	32 T2600		Soil	Soil 30-Jun-20 14:40			07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Subcontra	cted Analyses												
	acted Analyses												
	by method 5035FM_Calc												
	erformed by Eurofins TestAn		- 2337										
71-43-2	Benzene	< 19000		ug/kg	19000	3700	400	SW846 8260C	09-Jul-20 10:29	10-Jul-20 15:24	2337	539806	
91-20-3	Naphthalene	750,000		ug/kg	19000	6600	400	II .	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99			53-14	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	102			49-14	8 %		"	u	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	102		60-140 %				"	"	"	"	"	

2037-26-5

Toluene-d8 (Surr)

99

<u>Sample Identification</u> GP-707(26.8-28.8)_070120 SC58771-07 CAS No. Analyte(s) Result Flag					Project # 52 T2600		<u>Matrix</u> Soil						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
	acted Analyses												
	by method 5035FP_Calc												
	erformed by Eurofins TestAn		- 2337										
71-43-2	Benzene	< 3.1		ug/kg	3.1	0.15	1	SW846 8260C	08-Jul-20 13:00	08-Jul-20 22:15	2337	539715	
91-20-3	Naphthalene	76		ug/kg	3.1	0.41	1	"	"	"	"	"	
Surrogate r	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99			64-12	6 %		u	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	114		72-126 %				u	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	109		60-140 %				u	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	104			71-12	5 %		"	"	"	"	"	
Sample Id	lentification												
GP-704(2	5.2-27.2)_070220				Project #		<u>Matrix</u>	·	ection Date			<u>ceived</u>	
SC58771-	· -			6013973	2 T2600		Soil 02-Jul-20 11:45			:45	07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FP_Calc												
	erformed by Eurofins TestAn	ıerica - Buffalo	- 2337										
71-43-2	Benzene	< 3.3		ug/kg	3.3	0.16	1	SW846 8260C	08-Jul-20 13:00	08-Jul-20 22:40	2337	539715	
91-20-3	Naphthalene	8.1		ug/kg	3.3	0.44	1	"	"	u	"	"	
Surrogate r	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103			64-12	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	113			72-12	6 %		u	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	109		60-140 %				u	"	"	"	"	

71-125 %

Toluene-d8 (Surr)

106

2037-26-5

GP-702(1	Gample Identification GP-702(16-18)_070220 GC58771-09 GAS No. Analysis Pasult Flag			Client Project # 60139732 T2600			Matrix Collection Date/Time Soil 02-Jul-20 09:40				Received 07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
	by method 5035FM_Cald	<u>2</u>											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo	- 2337										
71-43-2	Benzene	< 46		ug/kg	46	8.7	1	SW846 8260C	09-Jul-20 10:29	11-Jul-20 15:08	2337	539806	
91-20-3	Naphthalene	2,100		ug/kg	46	15	1	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97			53-14	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	109			49-14	8 %		"	u	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	96		60-140 %				"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	101			50-14	9 %		"	"	"	"	"	
Sample Id	lentification												
	2-24) 070220			Client F	roject #		Matrix	<u>Coll</u>	ection Date	<u>/Time</u>	Rec	ceived	
`	/ -			6013973	2 T2600		Soil	02	2-Jul-20 10	:30	07-	Jul-20	
SC58771-	-10												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
<u>Prepared</u>	by method 5035FM_Cald	2											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo	- 2337										
71-43-2	Benzene	< 8500		ug/kg	8500	1600	80	SW846 8260C	09-Jul-20 10:29	10-Jul-20 16:11	2337	539806	
91-20-3	Naphthalene	200,000		ug/kg	8500	2800	80	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101			53-14	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	101			49-14	8 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	101			60-14	0 %		"	n	"	"	"	

Toluene-d8 (Surr)

97

2037-26-5

GP-702(1	ample Identification GP-702(10-12)_070220 C58771-11 (AS No. Analyte(s) Result Flag.			Client Project # 60139732 T2600			Matrix Collection Date/Time Soil 02-Jul-20 08:30				Received 07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Prepared	by method 5035FM_Calc	2											
Analysis pe	erformed by Eurofins TestAn	ierica - Buffalo -	2337										
71-43-2	Benzene	< 1800		ug/kg	1800	340	40	SW846 8260C	09-Jul-20 10:29	10-Jul-20 16:34	2337	539806	
91-20-3	Naphthalene	38,000		ug/kg	1800	600	40	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100			53-14	6 %			"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	111			49-14	8 %		"	II	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	100		60-140 %				"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	103			50-14	9 %		"	"	u	"	"	
Sample Id	lentification												
				Client I	Project #		Matrix	Colle	ection Date	:/Time	Red	ceived	
,	0-22)_062920			6013973	32 T2600		Soil	29	-Jun-20 14	:30	07-	Jul-20	
SC58771-	-12												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
	acted Analyses by method 5035FM Cald	:											
	erformed by Eurofins TestAn		2337										
71-43-2	Benzene	< 37000	200,	ug/kg	37000	7000	800	SW846 8260C	09-Jul-20 10:29	10-Jul-20 16:57	2337	539806	
91-20-3	Naphthalene	1,100,000		ug/kg	37000	12000	800	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96			53-14	6 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	100			49-14	8 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	98		60-140 %				"	"	"	"	"	
	• •												

2037-26-5

Toluene-d8 (Surr)

96

14-Jul-20 16:03 Page 12 of 16

GP-708(2	ample Identification GP-708(21.7-23.7)_062920 C58771-13 CAS No. Analyte(s) Result Flag			Client Project # 60139732 T2600			Matrix Collection Date/Tin Soil 29-Jun-20 10:57				Received 07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
	by method 5035FM_Cald	<u>2</u>											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo -	2337										
71-43-2	Benzene	< 36000		ug/kg	36000	6800	800	SW846 8260C	09-Jul-20 10:29	10-Jul-20 17:21	2337	539806	
91-20-3	Naphthalene	1,600,000		ug/kg	36000	12000	800		u	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102			53-14	16 %		"	u	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	105			49-14	18 %		"	II	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	107			60-14	10 %		"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	99			50-14	19 %		II .	"	"	"	"	
Sample Ic	lentification			Client I	Project #		Matrix	Coll	ection Date	/Time	Red	ceived	
GP-708(1	1.9-13.9)_062920				32 T2600		Soil	· · · · · · · · · · · · · · · · · · ·	9-Jun-20 10			Jul-20	
SC58771-	-14			0013973	52 12000		3011	25	9-Juii-20 10	7.20	0/-	Ju1-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
	•												
	acted Analyses by method 5035FM Calo	•											
	erformed by Eurofins TestAn		2227										
71-43-2	Benzene	< 41000	2337	ug/kg	41000	7800	1000	SW846 8260C	09-Jul-20	10-Jul-20	2337	539806	
91-20-3	Naphthalene	1,500,000		ug/kg	41000	14000	1000	"	10:29	17:44 "	"	"	
Surrogate	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96			53-14	16 %		"	u	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	105			49-14	18 %		"	u	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	102		60-140 %				"	"	"	"	"	
	* *												

2037-26-5

Toluene-d8 (Surr)

99

Trip Blan	Sample Identification Trip Blank SC58771-15			<u>Client Project #</u> 60139732 T2600			<u>Matrix</u> Trip Blar		-Jun-20 00:00		Received 07-Jul-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Prepared	octed Analyses by method 5035FP_Calc orformed by Eurofins TestAn		- 2337										
71-43-2	Benzene	< 5.0		ug/kg	5.0	0.25	1	SW846 8260C	08-Jul-20 13:00	08-Jul-20 21:51	2337	539715	
91-20-3	Naphthalene	< 5.0		ug/kg	5.0	0.67	1	"	"	"	"	"	
Surrogate r	recoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97			64-12	26 %		"	n .	"	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	111			72-12	26 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane (Surr)	105			60-14	10 %		"	"	"	"	"	
2037-26-5	Toluene-d8 (Surr)	104			71-12	25 %		"	"	"	"	"	

14-Jul-20 16:03 Page 14 of 16

Subcontracted Analyses - Quality Control

	.	D .	** .	40	Spike	Source	0/8==	%REC	D.F	RPI
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
W846 8260C										
atch 539715 - 5035LP_Calc										
LCS (5397151AQ)					Pre	epared & Ar	nalyzed: 08-	Jul-20		
Benzene	51.8		ug/kg	5.0	50.0		104	79-127		
Naphthalene	52.2		ug/kg	5.0	50.0		104	38-137		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	49.1		ug/kg		50.0		98	64-126		
Surrogate: Dibromofluoromethane (Surr)	54.4		ug/kg		50.0		109	60-140		
Surrogate: Toluene-d8 (Surr)	52.9		ug/kg		50.0		106	71-125		
Surrogate: 4-Bromofluorobenzene (Surr)	56.3		ug/kg		50.0		113	72-126		
Blank (5397152AB)					Pre	epared & Ar	nalyzed: 08-	Jul-20		
Benzene	< 5.0		ug/kg	5.0				-		
Naphthalene	< 5.0		ug/kg	5.0				-		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	50.3		ug/kg		50.0		101	64-126		
Surrogate: 4-Bromofluorobenzene (Surr)	54.9		ug/kg		50.0		110	72-126		
Surrogate: Dibromofluoromethane (Surr)	54.2		ug/kg		50.0		108	60-140		
Surrogate: Toluene-d8 (Surr)	51.0		ug/kg		50.0		102	71-125		
satch 539806 - 5035A_M_Calc										
LCS (5398061AQ)					Pre	epared: 09-	Jul-20 Ana	ılyzed: 10-Ju	<u>l-20</u>	
Naphthalene	2640		ug/kg	100	2500		106	65-142		
Benzene	2520		ug/kg	100	2500		101	77-125		
Surrogate: Toluene-d8 (Surr)	2490		ug/kg		2500		100	50-149		
Surrogate: Dibromofluoromethane (Surr)	2470		ug/kg		2500		99	60-140		
Surrogate: 4-Bromofluorobenzene (Surr)	2670		ug/kg		2500		107	49-148		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	2350		ug/kg		2500		94	53-146		
LCS Dup (53980621AY)			Source: 53	98061AQ	Pre	epared: 09-	Jul-20 Ana	ılyzed: 10-Ju	<u>l-20</u>	
Naphthalene	2690		ug/kg	100	2500	2640	108	65-142	2	20
Benzene	2530		ug/kg	100	2500	2520	101	77-125	1	20
Surrogate: 1,2-Dichloroethane-d4 (Surr)	2400		ug/kg		2500		96	53-146		
Surrogate: Dibromofluoromethane (Surr)	2440		ug/kg		2500		97	60-140		
Surrogate: Toluene-d8 (Surr)	2530		ug/kg		2500		101	50-149		
Surrogate: 4-Bromofluorobenzene (Surr)	2660		ug/kg		2500		106	49-148		
Blank (5398062AB)					Pre	epared: 09-	Jul-20 Ana	lyzed: 10-Ju	<u>l-20</u>	
Naphthalene	< 100		ug/kg	100				-		
Benzene	< 100		ug/kg	100				-		
Surrogate: Dibromofluoromethane (Surr)	2430		ug/kg		2500		97	60-140		
Surrogate: 4-Bromofluorobenzene (Surr)	2510		ug/kg		2500		100	49-148		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	2460		ug/kg		2500		99	53-146		
Surrogate: Toluene-d8 (Surr)	2480		ug/kg		2500		99	50-149		

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

14-Jul-20 16:03 Page 16 of 16

EDD format: Temp °C 96/4/ 042010-(42-66)<01-901-01 06-92 (81-21) COTOLO-(81-21) COT-92 SHII 08/9/ OREAO (E,F. F. 26) +UF-90 OC/1/LOCIDO(8,85-8,25) FOF-92 2 State-specific reporting standards Sample ID: Lab ID: C=Compsite C= Cusp *VI 19IT *II 19II *IInd (N N) Reduced* *A 92A =EX SL=Sludge No OC **SC=Zoil** Gas A=Indoor/Ambient Air lioS=OS 1!O=**O** Disposed Standard CT DPH RCP Report? GW=Groundwater DW=Drinking Water SW=Surface Water WW=Waste Water Containers sizylanA MILLIN 13 PLS * additional charges may appply 7=CM3OH 8=NaHSO4 (9=De)onized Water 10=H3PO4 QA/QC Reporting Notes: List Preservative Code below: I=Na2S2O F=Field Filtered 6=Ascorbic Acid *ONH= Project Mgr: Quote #: P.O No. Telephone #: Sampler(s): Ub40110 Report To: Project No: Samples disposed after 30 days unless otherwise instructed. Min. 24-hr notification needed for rushes Spectrum Analytical All TATs subject to laboratory approval CHYIN OF CUSTODY RECORD zniforna 🐫 Ebebeed - TAT day Standard TAT - 7 to 10 business days Special Handling:

orrected

procedion Factor

00:4

Time:

:91BG

Received by:

Relinquished by:

beal InsidmA

Condition upon receipt:

ot lism-H

Broken Intact Broken

Soil Jar Frozen

Refrigerated DI VOA Frozen

Custody Seals:

WI 146853

rigerated DI VOA Frozen Goil Jar Frozen	Ambient Deed Beff	9 मता धा	No.	- 0				^
y Seals:	Condition upon receipt: Custody	Corrected 7						
Control of the Contro		Corecction Factor	00:<1	196	12	0	1//	2
	:or figur-3	рэллээдо	5151	04/1/	1	diny)	4000	C. Stac How A
· ×	EDD format:	O° qm9T	:əmiT	:ejse(I	•	Received by:		Relinquished by:
						and the second s	and the second s	
				Name of the last o		and the state of t		
81000		7					1810-0	
7000		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT				The sale of the sa	Menda	901 CI
29 hibbs 82To	process account of the confidence account of the confidence of the				\ \ \	ON OLDER OF		
			1 1	2	717	7501 0899 08		
				Σ.	$\rightarrow \rightarrow \rightarrow$	OEHI (2/8/9)		r) 4169. Cl-
			1	2	os e			11001-87 - 11-
State-specific reporting standards:		6	# #	# #		Баее: Тіте:	ıble ID:	The state of the s
Sprabnars grinnoga alloage-space	Magnificane	SW-84-	of Clear C	of VOA V	Type Matrix	C=Compsite	and a survey of Author abde pages	G= Grab
Oksp A* Oksp B* Oksp	Vars	3	r Glass	A Vials		=EX	=zx	=IX
*YOQ_ seugess \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Benzere	%वेद0	, š	s			A Indoor/Ambient A	O=Oil SO=Soil SL=Sludge
CT DPH RCP Report? \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sig Company	30	atainers				ndwater SW=Surface	DW=Drinking Water GW=Groun
	sisylanA			सा प्राप		-0		
QA/QC Reporting Notes: * additional charges may appply	ist Preservative Code below:	n	may	= AOVI	oioA oidroos (=s1)	A=0 HO ₅ S=11		F=Field Filtered $I=N_{ab}_{2}SO_{3}$ $P=Field Filtered I=N_{ab}_{2}SO_{3}P=Field Filtered I=N_{ab}_{3}SO_{3}$
			:# ətoi	п О ———		::0N O.9 🔩	10 Carthy	
State:	Location: Sampler(s):						1 L951-9	Telephone #:
7677	Site Name:		3					WOOD OSE
				-29	ė.	інгоїсе То:	700	Report To: Colin Callas
disposed affer 30 days unless otherwise instructed.	02(0)							
s subject to laboratory approval -br notification needed for rushes disposed after 30 days unless otherwise instructed	Min. 24		7	- Jo Z	ьявч	усісаі	lenA murtəəqö	3
AT - Date Meeded:		COKI	ODA BE					anifornə 🗱
sysb ssonisud 01 of 7 - TAT b						THE TRANS		30113
Special Handing:		*						

Batch Summary

539715

Subcontracted Analyses

5397151AQ

5397152AB

SC58771-07 (GP-707(26.8-28.8)_070120)

SC58771-08 (GP-704(25.2-27.2)_070220)

SC58771-15 (Trip Blank)

539806

Subcontracted Analyses

5398061AQ

53980621AY

5398062AB

SC58771-01 (GP-706(21.5-23.5)_070120)

SC58771-02 (GP-701(9-11) 070120)

SC58771-03 (GP-705(20-22) 070120)

SC58771-04 (GP-713(16-18)_063020)

SC58771-05 (GP-711(10-12) 063020)

SC58771-06 (GP-710(20-22)_063020)

SC58771-09 (GP-702(16-18)_070220)

SC58771-10 (GP-703(22-24)_070220)

SC58771-11 (GP-702(10-12)_070220) SC58771-12 (GP-712(20-22)_062920)

SC58771-13 (GP-708(21.7-23.7)_062920)

SC58771-14 (GP-708(11.9-13.9)_062920)

V	Final Report
	Revised Report

Report Date: 14-Dec-20 16:00

Laboratory Report SC60122

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Petrolane/Northern Utilities-Rochester, NH

Project #: 60139732.2600

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Jersey DEP - NELAP # RI008 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignes R Dun

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC60122

Project: Petrolane/Northern Utilities-Rochester, NH

Project Number: 60139732.2600

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC60122-01	GP-901(4-6')12-04-2020	Soil	04-Dec-20 08:30	07-Dec-20 16:00
SC60122-02	GP-902(10-12')12-03-2020	Soil	03-Dec-20 15:15	07-Dec-20 16:00
SC60122-03	GP-903(6.5-8.5')12-03-2020	Soil	03-Dec-20 14:14	07-Dec-20 16:00
SC60122-04	GP-904(9-11')12-03-2020	Soil	03-Dec-20 12:50	07-Dec-20 16:00
SC60122-05	GP-905(5-7')12-03-2020	Soil	03-Dec-20 11:00	07-Dec-20 16:00
SC60122-06	GP-906(16-18')12-04-2020	Soil	04-Dec-20 10:15	07-Dec-20 16:00
SC60122-07	GP-907(21.5-23.5')12-04-2020	Soil	04-Dec-20 11:35	07-Dec-20 16:00
SC60122-08	GP-908(17-19')12-04-2020	Soil	04-Dec-20 13:00	07-Dec-20 16:00
SC60122-09	Trip Blank	Trip Blank	04-Dec-20 00:00	07-Dec-20 16:00

14-Dec-20 16:00 Page 2 of 22

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Samples:

SC60122-01RE1	GP-901(4-6')12-04-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-02	GP-902(10-12')12-03-2020
The Reporting Limit 1	has been raised to account for matrix interference.
SC60122-03	GP-903(6.5-8.5')12-03-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-04RE1	GP-904(9-11')12-03-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-05RE1	GP-905(5-7')12-03-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-06RE1	GP-906(16-18')12-04-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-07RE2	GP-907(21.5-23.5')12-04-2020
The Reporting Limit l	has been raised to account for matrix interference.
SC60122-08	GP-908(17-19')12-04-2020

14-Dec-20 16:00 Page 3 of 22

The Reporting Limit has been raised to account for matrix interference.

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Petrolane/Northern Utilities-Rochester, NH / 60139732.2600
Work Order:	SC60122
Sample(s) received on:	12/7/2020

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	✓		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	\checkmark		

14-Dec-20 16:00 Page 4 of 22

Summary of Hits

		~		y or rives		
Lab ID: S	SC60122-01			Client ID: GP-901(4-6))12-04-2020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		21400	D	819	μg/kg	SW846 8260C
Lab ID: S	SC60122-01RE1			Client ID: GP-901(4-6))12-04-2020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		26000	E, D	81.9	μg/kg	SW846 8260C
Lab ID: S	SC60122-02			Client ID: GP-902(10-1	2')12-03-202	20
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		316000	D, E	731	μg/kg	SW846 8260C
Lab ID: S	SC60122-02RE1			Client ID: GP-902(10-1	2')12-03-202	20
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		407000	D	7310	μg/kg	SW846 8260C
Lab ID: S	SC60122-03			Client ID: GP-903(6.5-	8.5')12-03-20	020
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		351000	E, D	868	μg/kg	SW846 8260C
Lab ID: S	SC60122-03RE1			Client ID: GP-903(6.5-	8.5')12-03-20	020
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		429000	D	8680	μg/kg	SW846 8260C
Lab ID: S	SC60122-04			Client ID: GP-904(9-11	')12-03-2020)
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		272000	E, D	930	μg/kg	SW846 8260C
Lab ID: S	SC60122-04RE1			Client ID: GP-904(9-11	')12-03-2020)
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Benzene		192	D	186	μg/kg	SW846 8260C
Naphthalene		154000	E, D	186	μg/kg	SW846 8260C
Lab ID: S	SC60122-04RE2			Client ID: GP-904(9-11	')12-03-2020)
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene		293000	D	4650	μg/kg	SW846 8260C
Lab ID: S	SC60122-05			Client ID: GP-905(5-7))12-03-2020	
Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Benzene		1400	D	1130	μg/kg	SW846 8260C

14-Dec-20 16:00 Page 5 of 22

Result Flag Reporting Limit Units Analytical Methon							
Separate 1470	Lab ID:	SC60122-05RE1			Client ID: GP-905(5	5-7')12-03-202	20
Separate	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Client ID: GP-905(5-7')12-03-2020 Client ID: GP-905(5-7')12-03-2020 Client ID: GP-905(5-7')12-03-2020 Client ID: GP-906(16-18')12-04-2020 Client ID: GP-907(21.5-23.5')12-04-2020 Client ID: GP-907(21.5-23.5')12-04-20	Benzene		1470	D	565	μg/kg	SW846 8260C
Result Flag Reporting Limit Units Analytical Method A	Naphthalene		110000	E, D	565	μg/kg	SW846 8260C
September 101000 D 2260 μg/kg SW846 8260C	Lab ID:	SC60122-05RE2			Client ID: GP-905(5	5-7')12-03-202	0
Client ID: GP-906(16-18')12-04-2020 Carameter Result Flag Reporting Limit Units Analytical Method Client ID: GP-906(16-18')12-04-2020 Client ID: GP-907(21.5-23.5')12-04-2020 Client ID: Client ID: Client ID: Client ID: Client ID: Cli	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Result Flag Reporting Limit Units Analytical Method daphthalene 64400 D 934 µg/kg SW846 8260C cab ID: SC60122-06RE1 Client ID: GP-906(16-18')12-04-2020 carameter Result Flag Reporting Limit Units Analytical Method denzene 163 D 93.4 µg/kg SW846 8260C daphthalene 44900 E, D 93.4 µg/kg SW846 8260C cab ID: SC60122-07 Client ID: GP-907(21.5-23.5')12-04-2020 GP-907(21.5-23.5')12-04-2020 carameter Result Flag Reporting Limit Units Analytical Method daphthalene 164000 E, D 875 µg/kg SW846 8260C carameter Result Flag Reporting Limit Units Analytical Method daphthalene 145000 D 2190 µg/kg SW846 8260C carameter Result Flag Reporting Limit Units Analytical Method	Naphthalene		101000	D	2260	μg/kg	SW846 8260C
Saphthalene 64400 D 934 μg/kg SW846 8260C	Lab ID:	SC60122-06			Client ID: GP-906(1	6-18')12-04-2	2020
Client ID: GP-906(16-18')12-04-2020 Carameter Result Flag Reporting Limit Units Analytical Method Carameter Result Flag Reporting Limit Units Analytical Method Caphthalene 44900 E, D 93.4 µg/kg SW846 8260C Caphthalene 44900 E, D 93.4 µg/kg SW846 8260C Caphthalene Result Flag Reporting Limit Units Analytical Method Caphthalene 164000 E, D 875 µg/kg SW846 8260C Caphthalene 145000 D 2190 µg/kg SW846 8260C 2190	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Parameter Result Flag Reporting Limit Units Analytical Method Benzene 163 D 93.4 µg/kg SW846 8260C Baphthalene 44900 E, D 93.4 µg/kg SW846 8260C Bab ID: SC60122-07 Client ID: GP-907(21.5-23.5')12-04-2020 Baphthalene 164000 E, D 875 µg/kg SW846 8260C Baphthalene 164000 E, D 875 µg/kg SW846 8260C Baphthalene Result Flag Reporting Limit Units Analytical Method Baphthalene 145000 D 2190 µg/kg SW846 8260C Bab ID: SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Barameter Result Flag Reporting Limit Units Analytical Method Barameter Result Flag Reporting Limit Units Analytical Method	Naphthalene		64400	D	934	μg/kg	SW846 8260C
163 D 93.4 μg/kg SW846 8260C 24900 E, D 875 μg/kg SW846 8260C 24901 E, D 875 μg/kg SW846 8260C 24902 E, D 875 μg/kg SW846 8260C 24903 E, D 875 μg/kg SW846 8260C 24904 E, D 875 μg/kg SW846 8260C 24904 E, D 875 μg/kg SW846 8260C 24905 E, D 875 μg/kg SW846 8260C 24906 E, D 875 μg/kg SW846 8260C 24906 E, D 875 μg/kg SW846 8260C 24907 E, D 1900 μg/kg SW846 8260C 24908 E, D 93.4 μg/kg SW846 8260C 24909 E, D 875 μg/kg SW846 8260C 24909 E, D 975 E, D 975 E, D 975 24909 E, D 975 E, D 975 E, D 975 24909 E, D 975 E, D 975 E, D 975 24909 E, D 975 2490	Lab ID:	SC60122-06RE1			Client ID: GP-906(1	6-18')12-04-2	2020
Adaptithalene Adaptit	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Client ID: SC60122-07 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method Japhthalene 164000 E, D 875 μg/kg SW846 8260C Lab ID: SC60122-07RE1 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method Japhthalene 145000 D 2190 μg/kg SW846 8260C Lab ID: SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method	Benzene		163	D	93.4	μg/kg	SW846 8260C
Parameter Result Flag Reporting Limit Units Analytical Method Japhthalene 164000 E, D 875 μg/kg SW846 8260C Jab ID: SC60122-07RE1 Client ID: GP-907(21.5-23.5')12-04-2020 Japhthalene 145000 D 2190 μg/kg SW846 8260C Jab ID: SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Jarameter Result Flag Reporting Limit Units Analytical Method Jarameter Result Flag Reporting Limit Units Analytical Method	Naphthalene		44900	E, D	93.4	$\mu g/kg$	SW846 8260C
Saphthalene 164000 E, D 875 μg/kg SW846 8260C Sab ID: SC60122-07RE1 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method Analytical Method Analytical Method D 2190 μg/kg SW846 8260C SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method Parameter Result	Lab ID:	SC60122-07			Client ID: GP-907(2	21.5-23.5')12-0	04-2020
Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method Japhthalene 145000 D 2190 μg/kg SW846 8260C Jab ID: SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Parameter Result Flag Reporting Limit Units Analytical Method Japhthalene 145000 D 2190 μg/kg SW846 8260C Lab ID: SC60122-07RE2 Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method	Naphthalene		164000	E, D	875	μg/kg	SW846 8260C
Naphthalene	Lab ID:	SC60122-07RE1			Client ID: GP-907(2	21.5-23.5')12-0	04-2020
Client ID: GP-907(21.5-23.5')12-04-2020 Parameter Result Flag Reporting Limit Units Analytical Method	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
Parameter Result Flag Reporting Limit Units Analytical Method	Naphthalene		145000	D	2190	μg/kg	SW846 8260C
	Lab ID:	SC60122-07RE2			Client ID: GP-907(2	21.5-23.5')12-0	04-2020
Benzene 268 D 175 μg/kg SW846 8260C	Parameter		Result	Flag	Reporting Limit	Units	Analytical Method
	Benzene		268	D	175	μg/kg	SW846 8260C

ParameterResultFlagReporting LimitUnitsAnalytical MethodNaphthalene519000D6920μg/kgSW846 8260C

E, D

Flag

E, D

175

692

Client ID:

Client ID:

Reporting Limit

SW846 8260C

SW846 8260C

Analytical Method

μg/kg

Units

μg/kg

GP-908(17-19')12-04-2020

GP-908(17-19')12-04-2020

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

111000

Result

364000

Naphthalene

SC60122-08

SC60122-08RE1

Lab ID:

Lab ID:

Parameter

Naphthalene

14-Dec-20 16:00 Page 6 of 22

-	lentification l-6')12-04-2020			Client P	roject #		<u>Matrix</u>	Coll	ection Date	/Time	Re	eceived	
SC60122	<i>'</i>			6013973	32.2600		Soil	04	-Dec-20 08	3:30	07-	Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SV	V846 8260											
Prepared	by method SW846 5035/	A Soil (high le	evel)			<u>Ini</u>	tial weight:	27.17 g					
71-43-2	Benzene	< 819	D	μg/kg dry	819	131	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	Χ
91-20-3	Naphthalene	21,400	D	μg/kg dry	819	237	1000	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	95			70-13	30 %		"	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13	30 %		"	"	u	"	"	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	30 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	30 %		"	u u	"	"	"	
Re-analys	sis of Volatile Organic Co 6 8260	mpounds	R01										
Prepared	by method SW846 5035/	A Soil (high le	evel)			<u>Ini</u>	tial weight:	27.17 g					
71-43-2	Benzene	< 81.9	D	μg/kg dry	81.9	13.1	100	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	Χ
91-20-3	Naphthalene	26,000	E, D	μg/kg dry	81.9	23.7	100	"	"	"	"	"	Χ
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	105			70-13	30 %		"	"	u u	"	"	
2037-26-5	Toluene-d8	102			70-13	30 %		"	"	u u	"	"	
17060-07-0	1,2-Dichloroethane-d4	98			70-13	30 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	30 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	85.3		%			1	SM2540 G (11)	07-Dec-20	08-Dec-20	PN	2002753	

Mod.

14-Dec-20 16:00 Page 7 of 22

	entification 0-12')12-03-2020 02			<u>Client Pr</u> 6013973			<u>Matrix</u> Soil	-	ection Date -Dec-20 15			Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	V846 8260	R01										
Prepared I	by method SW846 5035A	A Soil (high le	<u>vel)</u>			<u>Init</u>	ial weight:	<u>30.35 g</u>					
71-43-2	Benzene	< 731	D	μg/kg dry	731	117	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	X
91-20-3	Naphthalene	316,000	D, E	μg/kg dry	731	212	1000	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	0 %		"	"	"		"	
2037-26-5	Toluene-d8	101			70-13	0 %		"	"	u .	"	"	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	0 %		п	"	"	"	"	
Re-analys	is of Volatile Organic Cor 8260	mpounds_											
Prepared I	by method SW846 5035A	A Soil (high le	<u>vel)</u>			<u>Init</u>	ial weight:	30.35 g					
71-43-2	Benzene	< 7310	D	μg/kg dry	7310	1170	10000	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	Χ
91-20-3	Naphthalene	407,000	D	μg/kg dry	7310	2120	10000	"	"	"	"	u u	Χ
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0%		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	0 %		"	"	"	"	"	
General Cl	hemistry Parameters												

SM2540 G (11) 07-Dec-20 08-Dec-20 PN 2002753

Mod.

% Solids

86.3

14-Dec-20 16:00 Page 8 of 22

-	entification 5-8.5')12-03-2020			Client Project # 60139732.2600			<u>Matrix</u> Soil	Collection Date/Time 03-Dec-20 14:14			Received 07-Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	V846 8260	R01										
Prepared I	by method SW846 5035A	A Soil (high le	<u>vel)</u>			<u>Init</u>	ial weight:	25.34 g					
71-43-2	Benzene	< 868	D	μg/kg dry	868	139	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	Χ
91-20-3	Naphthalene	351,000	E, D	μg/kg dry	868	252	1000	н	"	"	"	"	Χ
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"		"	
2037-26-5	Toluene-d8	100			70-13	0 %		n	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	100			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	0 %		"	"	"	"	"	
	is of Volatile Organic Cor	mpounds_											
by SW846													
	by method SW846 5035A						ial weight:						
71-43-2	Benzene	< 8680	D	μg/kg dry	8680	1390	10000	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	429,000	D	μg/kg dry	8680	2520	10000	"	"	"	"	"	Х
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	95			70-13	0 %		n	"	"	"	"	
2037-26-5	Toluene-d8	102			70-13	0 %		"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"		
1868-53-7	Dibromofluoromethane	99			70-13	0 %		u u	"	"	"	"	
General Cl	nemistry Parameters												

SM2540 G (11) 07-Dec-20 08-Dec-20 PN 2002753

Mod.

% Solids

85.2

14-Dec-20 16:00 Page 9 of 22

Sample Io	dentification			Cl:4 D	:		M-4	C-11	4: D-4-	/T:	ъ.	:	
GP-904(9	9-11')12-03-2020			Client P 6013973			<u>Matrix</u> Soil		ection Date			D 20	
SC60122	-04			0013973	52.2600		5011	03	-Dec-20 12	2:30	0/-	-Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
Volatile O	organic Compounds by S\	N846 8260											
Prepared	by method SW846 5035	A Soil (high le	evel)			<u>Ini</u>	tial weight:	25.19 g					
71-43-2	Benzene	< 930	D	μg/kg dry	930	149	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	Χ
91-20-3	Naphthalene	272,000	E, D	μg/kg dry	930	270	1000	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	97			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	80 %		"	"	"			
Re-analys	sis of Volatile Organic Co	mnounds	R01										
by SW846		<u>Impoundo</u>											
Prepared	by method SW846 5035	A Soil (high le	evel)			<u>Ini</u>	ial weight:	25.19 g					
71-43-2	Benzene	192	D	μg/kg dry	186	29.7	200	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	Χ
91-20-3	Naphthalene	154,000	E, D	μg/kg dry	186	53.9	200	"	"	"	"	II .	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	104			70-13	80 %		"	"	"		"	
2037-26-5	Toluene-d8	100			70-13	80 %		"	"	"		"	
17060-07-0	1,2-Dichloroethane-d4	94			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	80 %		"	"	"	"	"	
Re-analys	sis of Volatile Organic Co	mpounds											
by SW846	-												
<u>Prepared</u>	by method SW846 5035	A Soil (high le	evel)			<u>Ini</u>	ial weight:	25.19 g					
71-43-2	Benzene	< 4650	D	μg/kg dry	4650	744	5000	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	Χ
91-20-3	Naphthalene	293,000	D	μg/kg dry	4650	1350	5000	II	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	80 %		"	"	"	"		

General Chemistry Parameters
% Solids

82.7

1

SM2540 G (11) 07-Dec-20 08-Dec-20

Mod.

PN

2002753

14-Dec-20 16:00 Page 10 of 22

Sample Io	dentification			Cl:4 D	:		M-4	C-11	4: D-4-	/T:	D.	:	
GP-905(5	5-7')12-03-2020			Client P			<u>Matrix</u> Soil		ection Date			Dec 20	
SC60122	-05			6013973	52.2600		5011	03	3-Dec-20 11	1:00	07-	-Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by S\	W846 8260											
Prepared	by method SW846 5035	A Soil (high le	evel)			<u>Ini</u>	tial weight:	24.05 g					
71-43-2	Benzene	1,400	D	μg/kg dry	1130	181	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	X
91-20-3	Naphthalene	118,000	E, D	μg/kg dry	1130	328	1000	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	98			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	98			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	80 %		"	"	"	"	"	
	sis of Volatile Organic Co	mpounds	R01										
by SW846													
	by method SW846 5035		•				tial weight:						
71-43-2	Benzene	1,470	D	μg/kg dry	565	90.4	500	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	110,000	E, D	μg/kg dry	565	164	500	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	104			70-13	80 %		"	u	"	"	"	
2037-26-5	Toluene-d8	100			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	98			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	80 %		"	u	"	"	"	
Re-analys	sis of Volatile Organic Co	mpounds											
by SW846	-												
<u>Prepared</u>	by method SW846 5035	A Soil (high le	evel)			<u>Ini</u>	tial weight:	24.05 g					
71-43-2	Benzene	< 2260	D	μg/kg dry	2260	362	2000	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	101,000	D	μg/kg dry	2260	656	2000	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	80 %		"	u	"	"	"	
2037-26-5	Toluene-d8	99			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	80 %		"	u	"	"	"	
1868-53-7	Dibromofluoromethane	100			70-13	80 %		"		"	"		
						- · ·							

General Chemistry Parameters

% Solids

76.2

SM2540 G (11) 07-Dec-20 08-Dec-20 PN 2002753 Mod.

14-Dec-20 16:00 Page 11 of 22

GP-906(1	ample Identification P-906(16-18')12-04-2020 C60122-06			Client Project # 60139732.2600			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Dec-20 10		Received 07-Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SV	V846 8260											
Prepared	by method SW846 5035	A Soil (high le	evel)			<u>Init</u>	ial weight:	<u>27.67 g</u>					
71-43-2	Benzene	< 934	D	μg/kg dry	934	150	1000	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	Χ
91-20-3	Naphthalene	64,400	D	μg/kg dry	934	271	1000	II .	n n	"	"	"	Χ
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	30 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	30 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99			70-13	30 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	30 %		"	"	"	"	"	
Re-analys	sis of Volatile Organic Col	mpounds	R01										
	by method SW846 5035	A Soil (high le	evel)			<u>Init</u>	ial weight:	27.67 g					
71-43-2	Benzene	163	D	μg/kg dry	93.4	15.0	100	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	44,900	E, D	μg/kg dry	93.4	27.1	100	"	"	"	"	"	Χ
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	30 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	30 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	30 %		n	"	"	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	30 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	79.7		%			1	SM2540 G (11)	07-Dec-20	08-Dec-20	PN	2002753	

Mod.

14-Dec-20 16:00 Page 12 of 22

•	<u>Ample Identification</u> P-907(21.5-23.5')12-04-2020 C60122-07 AS No. Analyte(s) Result Flo			Client Project # 60139732.2600			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	-Dec-20 11		Received 07-Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SV												
	by method SW846 5035A	A Soil (high le					ial weight:	<u>26.52 g</u>					
71-43-2	Benzene	< 875	D	μg/kg dry	875	140	1000	SW846 8260C	10-Dec-20	11-Dec-20	DDP	2002809	X
91-20-3	Naphthalene	164,000	E, D	μg/kg dry	875	254	1000	"	II .	II	"	"	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99			70-13	80 %		"	"	u u	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	80 %		"	"	u u	"	"	
Re-analys	sis of Volatile Organic Cor 6 8260	mpounds_											
<u>Prepared</u>	by method SW846 5035A	A Soil (high le	vel)			<u>Init</u>	ial weight:	26.52 g					
71-43-2	Benzene	< 2190	D	μg/kg dry	2190	350	2500	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	145,000	D	μg/kg dry	2190	635	2500	"	"	"	"	"	Χ
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	80 %		"	"	u u	"	"	
2037-26-5	Toluene-d8	99			70-13	80 %		"	"	u u	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	80 %		"	"	u u	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	80 %		"	"	"	"	"	
Re-analys	sis of Volatile Organic Cor 3 8260	mpounds_	R01										
	by method SW846 5035A	Soil (high le	vel)			<u>Init</u>	ial weight:	26.52 g					
71-43-2	Benzene	268	D	μg/kg dry	175	28.0	200	SW846 8260C	11-Dec-20	11-Dec-20	MED	2002819	X
91-20-3	Naphthalene	111,000	E, D	μg/kg dry	175	50.8	200	"	"	"	"	"	Χ
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	80 %		"	"	"		"	
2037-26-5	Toluene-d8	101			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99			70-13	80 %			"	"		"	

70-130 %

1

SM2540 G (11) 07-Dec-20 08-Dec-20 Mod.

PN

2002753

1868-53-7

Dibromofluoromethane

General Chemistry Parameters

% Solids

98

83.5

14-Dec-20 16:00 Page 13 of 22

GP-908(1'	ample Identification GP-908(17-19')12-04-2020 C60122-08 AS No. Analyte(s) Result			<u>Client Project #</u> 60139732.2600					ection Date -Dec-20 13		Received 07-Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	V846 8260	R01										
Prepared I	by method SW846 5035A	A Soil (high le	vel)			<u>Init</u>	ial weight:	31.56 g					
71-43-2	Benzene	< 692	D	μg/kg dry	692	111	1000	SW846 8260C	10-Dec-20	11-Dec-20	DDP	2002809	Χ
91-20-3	Naphthalene	364,000	E, D	μg/kg dry	692	201	1000	"	"	"	"	"	Χ
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	102			70-13	0 %		"	"	"		"	
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	100			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	0 %		"	"	"	"	"	
	is of Volatile Organic Cor	mpounds											
by SW846								0.4.50					
	by method SW846 5035A						ial weight:						
71-43-2	Benzene	< 6920	D	μg/kg dry	6920	1110	10000	SW846 8260C		11-Dec-20	MED	2002819	Х
91-20-3	Naphthalene	519,000	D	μg/kg dry	6920	2010	10000	"	"	"	"	"	Х
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	100			70-13	0 %		"	"	"	"	"	
General Cl	nemistry Parameters												

% Solids

87.2

SM2540 G (11) 07-Dec-20 08-Dec-20 PN 2002753

Mod.

14-Dec-20 16:00 Page 14 of 22

Trip Blan	C60122-09			Client Project # 60139732.2600			Matrix Co Trip Blank		ection Date -Dec-20 00	<u>Re</u> 07-			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	rganic Compounds by SV by method SW846 5035A		/el)			Init	tial weight:	15 a					
71-43-2	Benzene	< 50.0	D	μg/kg wet	50.0	8.00	50	SW846 8260C	10-Dec-20	10-Dec-20	DDP	2002809	Х
91-20-3	Naphthalene	< 50.0	D	μg/kg wet	50.0	14.5	50	"	"	u	"	"	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	80 %		"	"	u	"	"	
2037-26-5	Toluene-d8	102			70-13	80 %		"	"	u	"	"	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	80 %			"	u u	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	80 %		"	u	"	"	"	

14-Dec-20 16:00 Page 15 of 22

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 2002809 - SW846 5035A Soil (high level)										
Blank (2002809-BLK1)					Pre	epared & Ai	nalyzed: 10-	Dec-20		
Benzene	< 50.0	D	μg/kg wet	50.0						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
Surrogate: 4-Bromofluorobenzene	47.8		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	49.0		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.7		μg/l		50.0		107	70-130		
Surrogate: Dibromofluoromethane	49.3		μg/l		50.0		99	70-130		
LCS (2002809-BS1)			10		Pre	enared & A	nalyzed: 10-	Dec-20		
Benzene	18.8	D	μg/l		20.0	oparoa a 7 t	94	70-130		
Naphthalene	16.6	D	μg/l		20.0		83	70-130		
·								70-130		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	49.5		μg/l		50.0 50.0		99	70-130 70-130		
· ·	50.3 52.4		μg/l				101 105	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4			μg/l		50.0		105	70-130 70-130		
Surrogate: Dibromofluoromethane	50.3		μg/l		50.0					
LCS Dup (2002809-BSD1)	40.4	Б				epared & Ai	nalyzed: 10-		0	00
Benzene	19.4	D	μg/l		20.0		97	70-130	3	30
Naphthalene	19.0	D	μg/l		20.0		95	70-130	14	30
Surrogate: 4-Bromofluorobenzene	49.6		μg/l		50.0		99	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.8		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	49.6		μg/l		50.0		99	70-130		
MRL Check (2002809-MRL1)					Pre	epared & A	nalyzed: 10-	Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.96		μg/l		1.00		96	0-200		
Acetone	1.72		μg/l		1.00		172	0-200		
Acrylonitrile	1.11		μg/l		1.00		111	0-200		
Benzene	0.84		μg/l		1.00		84	0-200		
Bromobenzene	0.87		μg/l		1.00		87	0-200		
Bromochloromethane	1.08		μg/l		1.00		108	0-200		
Bromodichloromethane	0.62		μg/l		1.00		62	0-200		
Bromoform	0.85		μg/l		1.00		85	0-200		
Bromomethane	1.61		μg/l		1.00		161	0-200		
2-Butanone (MEK)	1.09		μg/l		1.00		109	0-200		
n-Butylbenzene	0.61		μg/l		1.00		61	0-200		
sec-Butylbenzene	0.49		μg/l		1.00		49	0-200		
tert-Butylbenzene	1.18		μg/l		1.00		118	0-200		
Carbon disulfide	1.00		μg/l		1.00		100	0-200		
Carbon tetrachloride	0.84		μg/l		1.00		84	0-200		
Chlorobenzene	0.94		μg/l		1.00		94	0-200		
Chloroethane	1.20		μg/l		1.00		120	0-200		
Chloroform	1.38		μg/l 		1.00		138	0-200		
Chloromethane	1.12		μg/l "		1.00		112	0-200		
2-Chlorotoluene	0.77		μg/l "		1.00		77	0-200		
4-Chlorotoluene	0.69		μg/l		1.00		69	0-200		
1,2-Dibromo-3-chloropropane	1.46		μg/l		1.00		146	0-200		
Dibromochloromethane	0.87		μg/l		1.00		87	0-200		
1,2-Dibromoethane (EDB)	0.86		μg/l		1.00		86	0-200		
Dibromomethane	0.95		μg/l		1.00		95	0-200		
1,2-Dichlorobenzene	0.93		μg/l		1.00		93	0-200		
1,3-Dichlorobenzene	0.84		μg/l		1.00		84	0-200		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Satch 2002809 - SW846 5035A Soil (high level)										
MRL Check (2002809-MRL1)					Pre	epared & Ai	nalyzed: 10-	Dec-20		
Dichlorodifluoromethane (Freon12)	0.92		μg/l		1.00		92	0-200		
1,1-Dichloroethane	0.94		μg/l		1.00		94	0-200		
1,2-Dichloroethane	1.09		μg/l		1.00		109	0-200		
1,1-Dichloroethene	0.87		μg/l		1.00		87	0-200		
cis-1,2-Dichloroethene	0.97		μg/l		1.00		97	0-200		
trans-1,2-Dichloroethene	1.03		μg/l		1.00		103	0-200		
1,2-Dichloropropane	1.10		μg/l		1.00		110	0-200		
1,3-Dichloropropane	0.93		μg/l		1.00		93	0-200		
2,2-Dichloropropane	1.01		μg/l		1.00		101	0-200		
1,1-Dichloropropene	0.71		μg/l		1.00		71	0-200		
cis-1,3-Dichloropropene	0.73		μg/l		1.00		73	0-200		
trans-1,3-Dichloropropene	0.75		μg/l		1.00		75	0-200		
Ethylbenzene	0.83		μg/l		1.00		83	0-200		
Hexachlorobutadiene	0.85		μg/l		1.00		96	0-200		
2-Hexanone (MBK)	1.18		μg/l		1.00		118	0-200		
Isopropylbenzene	0.51		μg/l		1.00		51	0-200		
4-Isopropyltoluene	1.09		μg/l		1.00		109	0-200		
Methyl tert-butyl ether	0.82		μg/l		1.00		82	0-200		
4-Methyl-2-pentanone (MIBK)	0.82				1.00		98	0-200		
• • • • • • • • • • • • • • • • • • • •			μg/l							
Methylene chloride	1.51		μg/l		1.00		151	0-200		
Naphthalene	1.90		μg/l		1.00		190 67	0-200		
n-Propylbenzene	0.67		μg/l		1.00 1.00			0-200		
Styrene	1.06		μg/l				106	0-200		
1,1,1,2-Tetrachloroethane	0.89		μg/l		1.00		89	0-200		
1,1,2,2-Tetrachloroethane	0.41		μg/l		1.00		41	0-200		
Tetrachloroethene	0.86		μg/l "		1.00		86	0-200		
Toluene	0.96		μg/l		1.00		96	0-200		
1,2,3-Trichlorobenzene	0.85		μg/l "		1.00		85	0-200		
1,2,4-Trichlorobenzene	0.90		μg/l 		1.00		90	0-200		
1,3,5-Trichlorobenzene	0.86		μg/l		1.00		86	0-200		
1,1,1-Trichloroethane	0.96		μg/l		1.00		96	0-200		
1,1,2-Trichloroethane	1.00		μg/l		1.00		100	0-200		
Trichloroethene	1.11		μg/l		1.00		111	0-200		
Trichlorofluoromethane (Freon 11)	0.86		μg/l		1.00		86	0-200		
1,2,3-Trichloropropane	0.92		μg/l		1.00		92	0-200		
1,2,4-Trimethylbenzene	0.44		μg/l		1.00		44	0-200		
1,3,5-Trimethylbenzene	0.56		μg/l		1.00		56	0-200		
Vinyl chloride	0.87		μg/l		1.00		87	0-200		
m,p-Xylene	0.74		μg/l		1.00		74	0-200		
o-Xylene	0.61		μg/l		1.00		61	0-200		
Tetrahydrofuran	1.18		μg/l		1.00		118	0-200		
Ethyl ether	0.98		μg/l		1.00		98	0-200		
Tert-amyl methyl ether	0.82		μg/l		1.00		82	0-200		
Ethyl tert-butyl ether	0.76		μg/l		1.00		76	0-200		
Di-isopropyl ether	0.77		μg/l		1.00		77	0-200		
Tert-Butanol / butyl alcohol	12.5		μg/l		10.0		125	0-200		
1,4-Dioxane	7.47		μg/l		10.0		75	0-200		
trans-1,4-Dichloro-2-butene	0.90		μg/l		1.00		90	0-200		
Ethanol	21.5		μg/l		20.0		107	0-200		
Surrogate: 4-Bromofluorobenzene	48.0		μg/l		50.0		96	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002809 - SW846 5035A Soil (high level)										
MRL Check (2002809-MRL1)					Pre	epared & A	nalyzed: 10-	Dec-20		
Surrogate: Toluene-d8	50.1		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.7		μg/l		50.0		107	70-130		
Surrogate: Dibromofluoromethane	51.0		μg/l		50.0		102	70-130		
MRL Check (2002809-MRL2)					Pre	epared & A	nalyzed: 10-	Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	2.14		μg/l		2.00	•	107	0-200		
Acetone	2.79		μg/l		2.00		140	0-200		
Acrylonitrile	2.26		μg/l		2.00		113	0-200		
Benzene	1.67		μg/l		2.00		84	0-200		
Bromobenzene	1.73		μg/l		2.00		86	0-200		
Bromochloromethane	1.92		μg/l		2.00		96	0-200		
Bromodichloromethane	1.64		μg/l		2.00		82	0-200		
Bromoform	1.84		μg/l		2.00		92	0-200		
Bromomethane	2.20		μg/l		2.00		110	0-200		
2-Butanone (MEK)	2.39		μg/l		2.00		120	0-200		
n-Butylbenzene	1.31		μg/l		2.00		66	0-200		
sec-Butylbenzene	1.17		μg/l		2.00		58	0-200		
tert-Butylbenzene	1.71		μg/l		2.00		86	0-200		
Carbon disulfide	1.99		μg/l		2.00		100	0-200		
Carbon tetrachloride	2.03		μg/l		2.00		102	0-200		
Chlorobenzene	1.91		μg/l		2.00		96	0-200		
Chloroethane	1.85		μg/l		2.00		92	0-200		
Chloroform	2.23		μg/l		2.00		112	0-200		
Chloromethane	2.29		μg/l		2.00		114	0-200		
2-Chlorotoluene	1.46		μg/l		2.00		73	0-200		
4-Chlorotoluene	1.42		μg/l		2.00		73 71	0-200		
1,2-Dibromo-3-chloropropane	2.31		μg/l		2.00		116	0-200		
Dibromochloromethane	1.83		μg/l		2.00		92	0-200		
1,2-Dibromoethane (EDB)	1.73		μg/l		2.00		86	0-200		
Dibromomethane	2.03		μg/l		2.00		102	0-200		
1.2-Dichlorobenzene	1.92				2.00		96	0-200		
1,3-Dichlorobenzene	1.67		µg/l		2.00		84	0-200		
1,4-Dichlorobenzene	2.06		μg/l		2.00		103	0-200		
Dichlorodifluoromethane (Freon12)			μg/l		2.00					
,	2.16		μg/l		2.00		108 99	0-200 0-200		
1,1-Dichloroethane 1,2-Dichloroethane	1.98 2.21		µg/l		2.00		110	0-200		
1,1-Dichloroethene			μg/l		2.00		90	0-200		
	1.80		μg/l					0-200		
cis-1,2-Dichloroethene	1.83		µg/l		2.00		92	0-200		
trans-1,2-Dichloroethene	1.90		μg/l		2.00		95			
1,2-Dichloropropane	1.84		µg/l		2.00		92	0-200		
1,3-Dichloropropane	1.76		μg/l		2.00		88	0-200		
2,2-Dichloropropane	1.97		μg/l		2.00		98	0-200		
1,1-Dichloropropene	1.57		μg/l "		2.00		78	0-200		
cis-1,3-Dichloropropene	1.37		μg/l		2.00		68	0-200		
trans-1,3-Dichloropropene	1.61		μg/l		2.00		80	0-200		
Ethylbenzene	1.79		μg/l "		2.00		90	0-200		
Hexachlorobutadiene	1.88		μg/l		2.00		94	0-200		
2-Hexanone (MBK)	2.06		μg/l		2.00		103	0-200		
Isopropylbenzene	1.12		μg/l		2.00		56	0-200		
4-Isopropyltoluene	1.61		μg/l		2.00		80	0-200		
Methyl tert-butyl ether	1.52		μg/l		2.00		76	0-200		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002809 - SW846 5035A Soil (high level)										
MRL Check (2002809-MRL2)					Pre	epared & Ar	nalyzed: 10-	Dec-20		
4-Methyl-2-pentanone (MIBK)	1.48		μg/l		2.00		74	0-200		
Methylene chloride	2.43		μg/l		2.00		122	0-200		
Naphthalene	2.15		μg/l		2.00		108	0-200		
n-Propylbenzene	1.50		μg/l		2.00		75	0-200		
Styrene	1.53		μg/l		2.00		76	0-200		
1,1,2-Tetrachloroethane	1.82		μg/l		2.00		91	0-200		
1,1,2,2-Tetrachloroethane	1.60		μg/l		2.00		80	0-200		
Tetrachloroethene	1.80		μg/l		2.00		90	0-200		
Toluene	1.91		μg/l		2.00		96	0-200		
1,2,3-Trichlorobenzene	1.46		μg/l		2.00		73	0-200		
1,2,4-Trichlorobenzene	1.61		μg/l		2.00		80	0-200		
1,3,5-Trichlorobenzene	1.73		μg/l		2.00		86 06	0-200		
1,1,1-Trichloroethane	1.93		μg/l		2.00		96	0-200		
1,1,2-Trichloroethane	1.95		μg/l		2.00		98	0-200		
Trichloroethene	2.00		μg/l		2.00		100	0-200		
Trichlorofluoromethane (Freon 11)	2.06		μg/l		2.00		103	0-200		
1,2,3-Trichloropropane	2.05		μg/l		2.00		102	0-200		
1,2,4-Trimethylbenzene	1.15		μg/l		2.00		58	0-200		
1,3,5-Trimethylbenzene	1.23		μg/l		2.00		62	0-200		
Vinyl chloride	1.89		μg/l		2.00		94	0-200		
m,p-Xylene	1.41		μg/l		2.00		70	0-200		
o-Xylene	1.22		μg/l		2.00		61	0-200		
Tetrahydrofuran	1.99		μg/l		2.00		100	0-200		
Ethyl ether	1.98		μg/l		2.00		99	0-200		
Tert-amyl methyl ether	1.56		μg/l		2.00		78	0-200		
Ethyl tert-butyl ether	1.50		μg/l		2.00		75	0-200		
Di-isopropyl ether	1.60		μg/l		2.00		80	0-200		
Tert-Butanol / butyl alcohol	21.6		μg/l		20.0		108	0-200		
1,4-Dioxane	16.3		μg/l		20.0		82	0-200		
trans-1,4-Dichloro-2-butene	1.99		μg/l		2.00		100	0-200		
Ethanol	40.8		μg/l		40.0		102	0-200		
Surrogate: 4-Bromofluorobenzene	47.9		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	48.9		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.0		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	49.6		μg/l		50.0		99	70-130		
Batch 2002819 - SW846 5035A Soil (high level)	40.0		P9/1		00.0		33	70 700		
Blank (2002819-BLK1)					Pre	epared & Ar	nalyzed: 11-	Dec-20		
Benzene	< 50.0	D	μg/kg wet	50.0						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
Surrogate: 4-Bromofluorobenzene	48.8		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	50.2		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	50.4		μg/l		50.0		101	70-130		
-			۳a,.			anarad & Ar	nalyzed: 11-			
LCS (2002819-BS1)	40.0	D	ue II			spareu & Ar				
Benzene Naphthalene	18.2 21.5	D D	μg/l μg/l		20.0 20.0		91 108	70-130 70-130		
. Tapitulaiono	50.3		μg/l		50.0		101	70-130		
Surrogate: 4 Bromofluorohon-on-	2U 3		CICI/I		2U U		101	/ U= 1.5U		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	50.3		μg/l		50.0		101	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 2002819 - SW846 5035A Soil (high level)										
LCS (2002819-BS1)					Pre	epared & Ar	nalyzed: 11-	-Dec-20		
Surrogate: Dibromofluoromethane	50.1		μg/l		50.0		100	70-130		
LCS Dup (2002819-BSD1)					Pro	epared & Ar	nalyzed: 11	-Dec-20		
Benzene	18.7	D	μg/l		20.0		93	70-130	3	30
Naphthalene	22.2	D	μg/l		20.0		111	70-130	3	30
Surrogate: 4-Bromofluorobenzene	51.1		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.7		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	50.0		μg/l		50.0		100	70-130		

14-Dec-20 16:00 Page 20 of 22

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SM2540 G (11) Mod.										
Batch 2002753 - General Preparation										
<u>Duplicate (2002753-DUP1)</u>			Source: SC	60122-01	Pre	epared: 07-	Dec-20 An	alyzed: 08-D	ec-20	
% Solids	86.0		%			85.3			0.7	5
<u>Duplicate (2002753-DUP2)</u>			Source: SC	60122-02	Pre	epared: 07-	Dec-20 An	alyzed: 08-D	ec-20	
% Solids	86.1		%			86.3			0.3	5

14-Dec-20 16:00

Notes and Definitions

D Data reported from a dilution

E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or

interferences resulting in a biased final concentration.

R01 The Reporting Limit has been raised to account for matrix interference.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

14-Dec-20 16:00 Page 22 of 22

9 Refrigerated Soil Jar Frozen NOA Frozen Ambient Iced IK ID# 33 Custody Seals: Condition upon receipt: Broken pataatto 00:91 + orecction Factor Musis Colyphia 5 6 80:21 Colin. Callahan @ necom . com EDD format: AELOM Jemp oC Relinquished by: Time: Date: Received by: TING BIGHK 847 947 or or th (11 0202-40-51 (1-17) 801-912 00 13:00 3 8 25:11 000/4/21/2/2010(2.55.215) FOR 90 (0 S1:01 000/ H/21 000-40-51(81-91) 00-90 90 2 00:11 000/6/21 000 60-51(T-2)20P-92 02:51 Wal 8 /21 03 20 50 51 (11-p) HOV-GD 12:50 3 h1: h1 0305/8/31 000, 20, 51 8, 2, 3/5012-913 80 5 X 5 51:51 0701 [[7 | 200-60-51 (, 21-01) 20 1-09 7 5 X 2210975 0707-40-51(0-4) 104-9020 X X 05 3 6130 State-specific reporting standards: Check if chlorinated 20 Sample ID: Lab ID: 00 of Amber Glass Other: 17 N *II 19IT *IIn4 CN *beduced* (*A q2A *8 dSV =7X =IX**AQQ No QC Standard SC=Soil Gas niA sindoor/Ambient Air SL=Sludge IIOS=OS IiO=O CT DPH RCP Report? WW=Waste Water GW=Groundwater DW=Drinking Water MA DEP MCP CAM Report? SW=Surface Water sisylanA Containers * additional charges may appply 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ =11 QA/QC Reporting Notes: List Preservative Code below: 6=Ascorbic Acid S=NaOH EONH= 3=H2SO4 7=HCI I = Na₂S2O₃12521 W con 1 c- 1 mas Quote #: P.O No.: UNINI IN NILON Project Mgr: challes skire How Sampler(s): 0012-5010-861 Telephone #: POGNESTIC ANT State: NH 250 AMA BYDEN OIS 24 Penalane/Normern UTITITES INC. Site Name: 0002, 28 TPE 100 Project No: Report To: AEUM Samples disposed after 30 days unless otherwise instructed. Min. 24-hr notification needed for rushes All TATs subject to laboratory approval New England Rush TAT - Date Needed: CHYIN OF CUSTODY RECORD Environment Testing Standard TAT - 7 to 10 business days sniforus 💥 Special Handling:

Thip BIGHK SH 947 00:81 2024/51 0505-40-51(PI-TI)80P-9H X 3 58:11 02014/21/2420(8.55-213) P. 99 (O SI:01 000/ H/21 000-40-51(81-11) 004-45 90 00:11 000/5/21/00 50-21(1-2)20p-97 50 2 02:51 0201 8/21 0505 E0.51 (11-P) POP-90 /2 9/21/49 5 41:41 0505/E1210202. 20.51(2,8.2, JEOP-91) ED 0701 [1710202-80-51 (11-01) 5012-97 70 8 51:51 X 5 0202-40-51(0-4)104-910 X 05 Check if chlorinated Time: Sample ID: Lab ID: 00 of Amber Glass N Tier IV* *II 19iT C=Compsite *IIn4 (N N) Reduced* 0 *A q2A =IX $=\varepsilon x$ =7X *AQQ No QC Standard SC=Soil Gas IN=Sludge A=Indoor\Ambient Air lioS=OS IiO=O CL DPH RCP Report? WW=Waste Water GW=Groundwater SW=Surface Water DW=Drinking Water MA DEP MCP CAM Report? Analysis Containers * additional charges may appply =11 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ QA/QC Reporting Notes: List Preservative Code below: 6=Ascorbic Acid S=NaOH J=HCI I=Na2S2O3 F=Field Filtered 72551 42 M con 1-1 Mas COIN CALLANGO Project Mgr: Quote #: P.O No.: challes sieve Home 0012-506-866 Sampler(s): Telephone #: POUNTSITE AND Location: 250 AMA DISZY Persiane //Or meron Utilities in Report To: AEUM 0001 28 TPE 100 Project No: Samples disposed after 30 days unless otherwise instructed. Min. 24-hr notification needed for rushes All TATs subject to laboratory approval New England Rush TAT - Date Needed: CHYIN OF CUSTODY RECORD Environment Testing Standard TAT - 7 to 10 business days sniforna 👯 Special Handling:

Date:

Received by:

Relinquished by:

Soil Jar Frozen

X DI VOA Frozen

Present

Callahan (2) alcom. com

Refrigerated

Custody Seals:

Ambient Iced

Condition upon receipt:

EDD format:

3 3

Delogatio

80:21

Time:

orecction Factor

Jemp oC

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC60122-01	GP-901(4-6')12-04-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-02	GP-902(10-12')12-03-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-03	GP-903(6.5-8.5')12-03-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-04	GP-904(9-11')12-03-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-05	GP-905(5-7')12-03-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-06	GP-906(16-18')12-04-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-07	GP-907(21.5-23.5')12-04-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-08	GP-908(17-19')12-04-2020	Volatile Organic Compounds by SW846 8260	12/9/2020
SC60122-09	Trip Blank	Volatile Organic Compounds by SW846 8260	12/9/2020

Batch Summary

2002753

General Chemistry Parameters

2002753-DUP1

2002753-DUP2

SC60122-01 (GP-901(4-6')12-04-2020)

SC60122-02 (GP-902(10-12')12-03-2020)

SC60122-03 (GP-903(6.5-8.5')12-03-2020)

SC60122-04 (GP-904(9-11')12-03-2020)

SC60122-05 (GP-905(5-7')12-03-2020)

SC60122-06 (GP-906(16-18')12-04-2020)

SC60122-07 (GP-907(21.5-23.5')12-04-2020)

SC60122-08 (GP-908(17-19')12-04-2020)

2002809

Volatile Organic Compounds

2002809-BLK1

2002809-BS1

2002809-BSD1

2002809-MRL1

2002809-MRL2

SC60122-01 (GP-901(4-6')12-04-2020)

SC60122-02 (GP-902(10-12')12-03-2020)

SC60122-03 (GP-903(6.5-8.5')12-03-2020)

SC60122-04 (GP-904(9-11')12-03-2020)

SC60122-05 (GP-905(5-7')12-03-2020)

SC60122-06 (GP-906(16-18')12-04-2020)

SC60122-07 (GP-907(21.5-23.5')12-04-2020)

SC60122-08 (GP-908(17-19')12-04-2020)

SC60122-09 (Trip Blank)

2002819

Volatile Organic Compounds

2002819-BLK1

2002819-BS1

2002819-BSD1

SC60122-01RE1 (GP-901(4-6')12-04-2020)

SC60122-02RE1 (GP-902(10-12')12-03-2020)

SC60122-03RE1 (GP-903(6.5-8.5')12-03-2020)

SC60122-04RE1 (GP-904(9-11')12-03-2020)

SC60122-04RE2 (GP-904(9-11')12-03-2020)

SC60122-05RE1 (GP-905(5-7')12-03-2020)

SC60122-05RE2 (GP-905(5-7')12-03-2020)

SC60122-06RE1 (GP-906(16-18')12-04-2020)

SC60122-07RE1 (GP-907(21.5-23.5')12-04-2020)

SC60122-07RE2 (GP-907(21.5-23.5')12-04-2020)

SC60122-08RE1 (GP-908(17-19')12-04-2020)

NHDES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

SOIL MANAGEMENT REPORT SUBMITTAL
Petrolane/Northern Utilities, Inc. Site
Route 125
Rochester, NH 03867

NHDES Site #: 198712002
Project Type: Hazardous Waste Project
Project Number: 0432

Prepared For:
Unitil Service Corp.
6 Liberty Lane W
Hampton, NH 03842-1720
Phone Number (603) 379-3829
RP Contact Name: Thomas Murphy
RP Contact Email: murphyt@unitil.com

OF NEW HAMOS TO SHARE THE SOLUTION OF NEW HAMOS THE SOLUTION

Digitally signed by Millard, Joshua DN: of=Millard, Joshua, c=US, o=AESOM, ou=USCHL1, email=joshua.millard@aecom.com Date: 2021.10.14 12:22:18 -04'00'

Prepared By:

AECOM Technical Services, Inc. 250 Apollo Drive.

Chelmsford, MA 01824 Phone Number: (978) 905-2100 Contact Name: Ryan McCarthy

Contact Email: ryan.mccarthy@aecom.com

Date of Report: October 12, 2021

Soil Management Report Utility Upgrade Project

Petrolane/Northern Utilities, Inc. Site Route 125, Rochester, NH

October 12, 2021

Quality information

Prepared by

Reviewed by

Approved by

Colin Callahan Scientist

Mark McCabe Senior Scientist Ryan McCarthy Project Manager

Prepared for:

Unitil Service Corporation Hampton, NH

Prepared by:

AECOM Technical Services, Inc. 250 Apollo Drive Chelmsford, MA 01824

Table of Contents

1.	Introduction	. 1
2.	Facility Construction	. 2
	Worker Health and Safety	
	Waste Management	
	4.1 Horizontal Directional Drill	
	4.1.1 HDD Waste Management and Disposal	. 4
	4.2 Regulator Station Piping	. 4
5.	References	

Appendices

Appendix A Laboratory Report - Soil Characterization HDD Entry/Exit Pits

Appendix B Laboratory Report - Drilling Mud Characterization

Appendix C Waste Disposal Documentation - Drilling Mud

Appendix D Laboratory Reports - Soil Characterization Regulator Station Piping

Appendix E Waste Disposal Documentation - Soil Regulator Station Piping

Figures

Figure 1-1 - Site Location

Figure 2-1 – Station and HDD Overview

Figure 2-2 – Entry and Exit Pits

Figure 4-1 – HDD Fluids/Spoils Storage Tanks

Figure 4-2 – Regulator Station Piping

Figure 4-3 - Restored Site

Tables

Table 4-1 – Waste Profile Development, Soil – Horizontal Directional Drill Pit

Table 4-2 – Waste Profile Development, Drilling Mud – Horizontal Directional Drill

Table 4-3 – Summary of Waste Disposal Quantities – Horizontal Directional

Drilling Table 4-4 - Waste Profile Development, Soil - Regulator Station Piping

Table 4-5 – Summary of Waste Disposal Quantities – Regulator Station Piping

1. Introduction

The Petrolane Site (Site) is located at the intersection of Route 125 and the Spaulding Turnpike in Rochester, New Hampshire. The Site is bounded by Axe Handle Brook to the north, the Cocheco River to the east, and roadways on the west and south (Figure 1-1). The former Rochester Manufactured Gas Plant (MGP) facility operated in the western portion of the Site from 1903 through 1957.

Unitil, d/b/a Northern Utilities (Northern), is constructing a new natural gas regulating station on the Site to support a similar facility that has existed on the property since 1991. The utility upgrade is part of a multi-year plan to reinforce the existing natural gas network serving customers in the City of Rochester.

In support of The Notice of Activity and Use Restriction (AUR) for the Site (Sept. 12, 2002), Unitil provided notification to the New Hampshire Department of Environmental Services (NHDES) of activities that had the potential to disturb soil. The Soil Management Plan Utility Upgrade Project, dated July 29, 2020 provided information to ensure the following:

- that workers would be adequately protected in accordance with applicable health and safety regulations; and
- that disturbed media would be managed in accordance with applicable federal and NHDES standards.

This Soil Management Report documents the activities conducted to comply with the requirements of the AUR. It is organized as follows: the scope of the utility construction project is summarized in Section 2; the proposed health and safety protocols are detailed in Section 3; information on the nature and quantities of waste generated during construction is provided in Section 4; and references used in the preparation of this document are presented in Section 5. Documentation associated with the management of wastes is presented in the Appendices.

2. Facility Construction

The new regulator station will be constructed in a 35-foot by 80-foot area located adjacent to Rte. 125 (Figure 2-1). Above ground piping for the facility is supported by a slab on grade pad. The associated below ground piping for the station was installed at depth of 3 to 4 ft. bgs.

Unitil used a Horizontal Directional Drill (HDD) to connect the proposed station to a 12-inch steel gas main extension located on property owned by the City of Rochester on Old Dover Road (Tax Map 137, Lot 76). The property is currently used as a public recreational facility, i.e., a ballfield. The HDD was 530 feet in length (distance between entry/exit pits) and crossed under the Cocheco River at a depth of 14 feet below the top of sediment.

As illustrated in the Figure, entry and exit pits for the HDD were excavated on the Northern and City of Rochester properties, respectively. The drill rig was setup at the entry pit and drilled the pilot hole to the exit pit. Photographs of the entry and exit pits are provide in Figure 2-2. HDD activities were conducted during the period from December 18 to December 21, 2020.

3. Worker Health and Safety

All work was conducted in accordance with site-specific health and safety plans (HASPs) related to the Site and associated MGP impacts, as well as work-related documents developed by the contractors conducting the excavation, drilling and waste management activities. The following companies were involved in the soil management activities:

- Unitil Project Management
- Henniker Directional Drilling Horizontal Directional Drilling
- Neuco Excavation and Pipe Assembly
- US Ecology Waste Management
- AECOM Environmental Oversight

The HASPs conformed to the regulatory requirements and guidelines established in the following references:

- Title 29, Part 1910 of the Code of Federal Regulations (29 CFR 1910), Occupational Safety and Health Standards (with special attention to Section 120, Hazardous Waste Operations and Emergency Response).
- Title 8 of the California Code of Regulations (8 CCR), with special attention to Section 5192
 Hazardous Waste Operations and Emergency Response, and Section 3202, Injury Illness Prevention Program.
- 29 CFR 1926, Safety and Health Regulations for Construction.
- 8 CCR, with special attention to Sub Chapter 4, Sections 1500 1938 Construction Safety Orders.
- National Institute for Occupational Safety and Health/Occupational Safety and Hazards
 Administration/U.S. Coast Guard/U.S. Environmental Protection Agency, Occupational Safety and
 Health Guidance Manual for Hazardous Waste Site Activities, Publication No. 85-115, 1985.

Exclusion zones were established around the disturbed areas and access was limited to OSHA-trained staff that were enrolled in a certified medical surveillance programs and wearing the appropriate personal protection equipment (PPE), typically Level D. Workspace air monitoring documented that the use of Level D personal protection equipment (PPE) was appropriate for site workers.

Additionally, site workers were required to comply with Unitil's COVID19 protocols that included a daily attestation to fitness to work, use of face coverings, disinfection/cleaning of equipment/vehicles, and social distancing to the extent practical.

4. Waste Management

The upgrade of the regulator station generated drilling fluids/spoils from the HDD and soil from the installation of equipment/piping. The following sections discuss the nature, quantities, and management of these materials.

4.1 Horizontal Directional Drill

The directional drilling process uses a nonhazardous drilling fluid made up of primarily water and bentonite (de-hydrated clay). The drilling fluid is used to remove cuttings from the hole, lubricate and cool the bit/drilling assembly, stabilize the hole, suspend drilled cuttings during static periods, and transmit hydraulic energy to the bit. The work progressed at a rate that allowed the spoils/fluids to be contained within the drill hole and entry/exit pits throughout the process.

The HDD traversed the Site at a depth of approximately 4 ft bgs (entry pit) to 20 ft bgs (riverbank). Observations at the depth the HDD intersected the geotechnical boring locations, 5 ft bgs and 19 ft bgs, respectively indicated that the soil is primarily sand and gravel. The observed MGP impacts at these locations/depths were limited to odor. Limited observations of sheen in the entry pit spoils indicated that the HDD passed through an outer portion of the MGP source area at a depth of approximately 12 ft bgs.

4.1.1 HDD Waste Management and Disposal

Soil in the area of the entry pit was characterized prior to mobilization of the HDD. The results are provided in Table 4-1. The analytical reports from the characterization of soil samples are provided in Appendix A. Soil from the excavation of the entry pit (166 tons) was transported to Clean Earth, Loudon, NH during the period from December 29, 2020 to January 15, 2021.

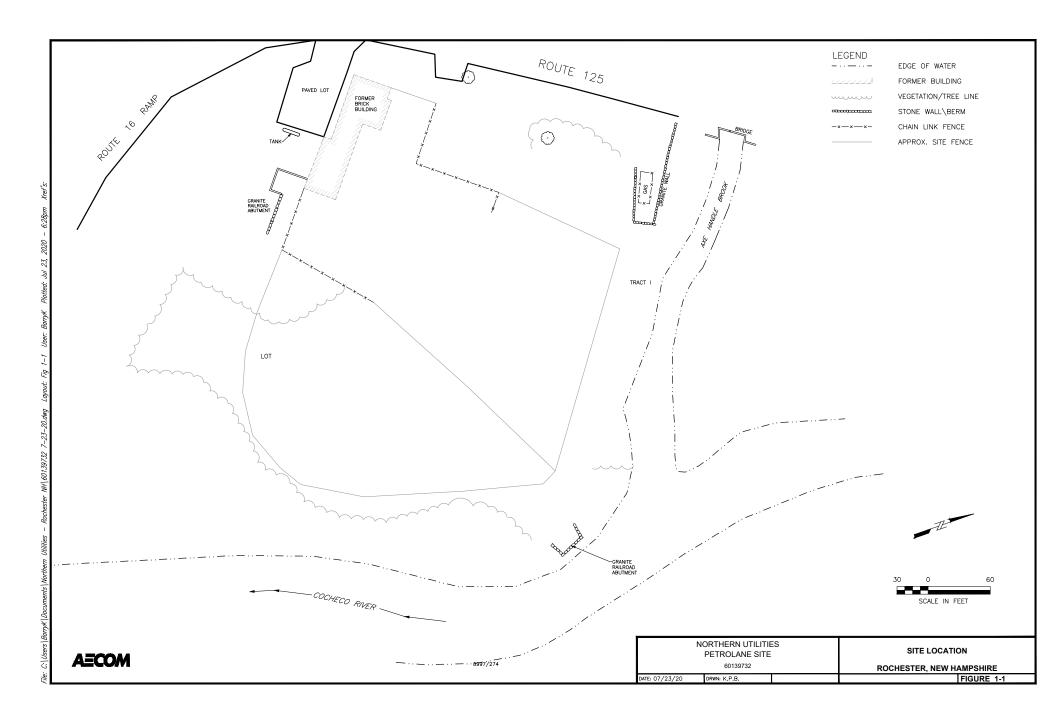
The drilling mud contained in the entry/exit pits were pumped directly to enclosed tanks (Figure 4-1). The results of representative samples of drilling fluids/spoils collected from the entry and exit pits are presented in Table 4-2. The analytical reports from the characterization of the drilling muds are provided in Appendix B. The collected waste (33 tons) was transported to the Tradebe Treatment and Recycling facility in Newington, NH for solidification and disposal during the period from January 2, 2021 to January 15, 2021. A summary of the waste shipments is provided in Table 4-3. The associated documentation is provided in Appendix C.

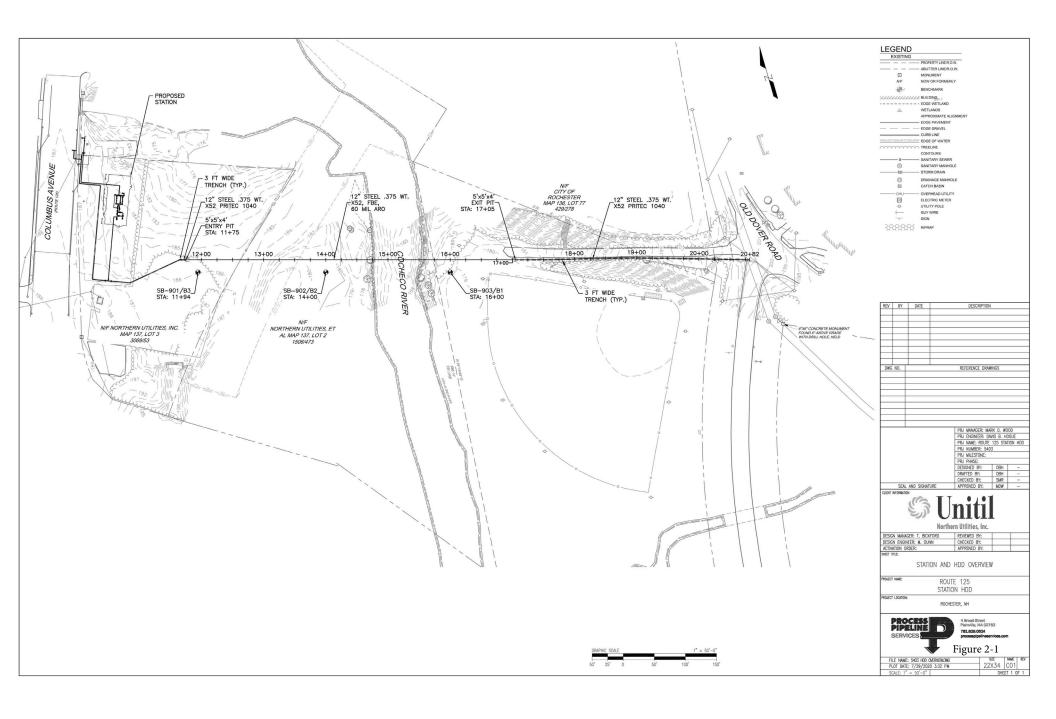
4.2 Regulator Station Piping

The installation of the piping for the regulator station piping was installed in several mobilizations during the period of April 7th to August 19th. The trench for the piping had the approximate dimensions of 650 ft. (L), 3 ft. (W) and 4 ft. (D). The excavation for the trench, associated structures, and station pad generated 976 c.y. (1,562 tons) of soil. The soil was loaded directly to lined and covered roll-off boxes for transport (Figure 4-2).

Disturbed areas were restored and the base of the regulator station was constructed as slab on grade (Figure 4-3)

5. References


AECOM, 2009 The Soil Management Plan Utility Upgrade Project, July 29, 2020


HLA, 1999. Phase II and IIA Site Investigation Report, Former Rochester MGP Site, Rochester, New Hampshire. February 1999.

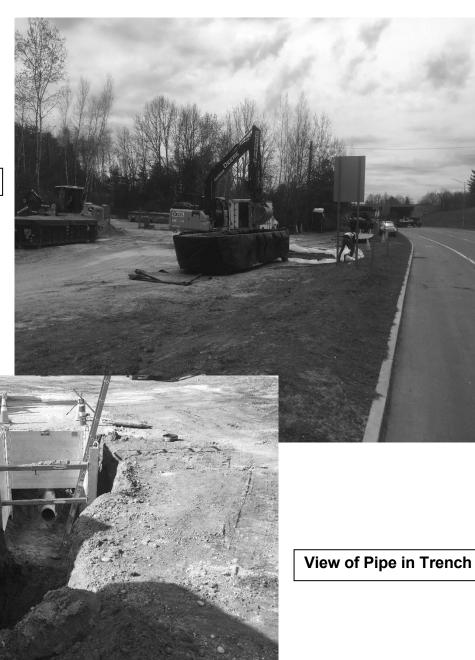
RETEC, 2001. Completion Report, Former Manufactured Gas Plant, Source Removal Action, Rochester, New Hampshire. April 2001.

RETEC, 2004a. Completion Report Addendum Source Removal Action, Former Manufactured Gas Plant, Rochester, New Hampshire. June 2004.

Figures

Entry Pit

UNITIL CORPORATION ROCHESTER MGP UTILITY UPGRADE PROJECT	ENTRY AND EXIT PITS
	FIGURE 2-2

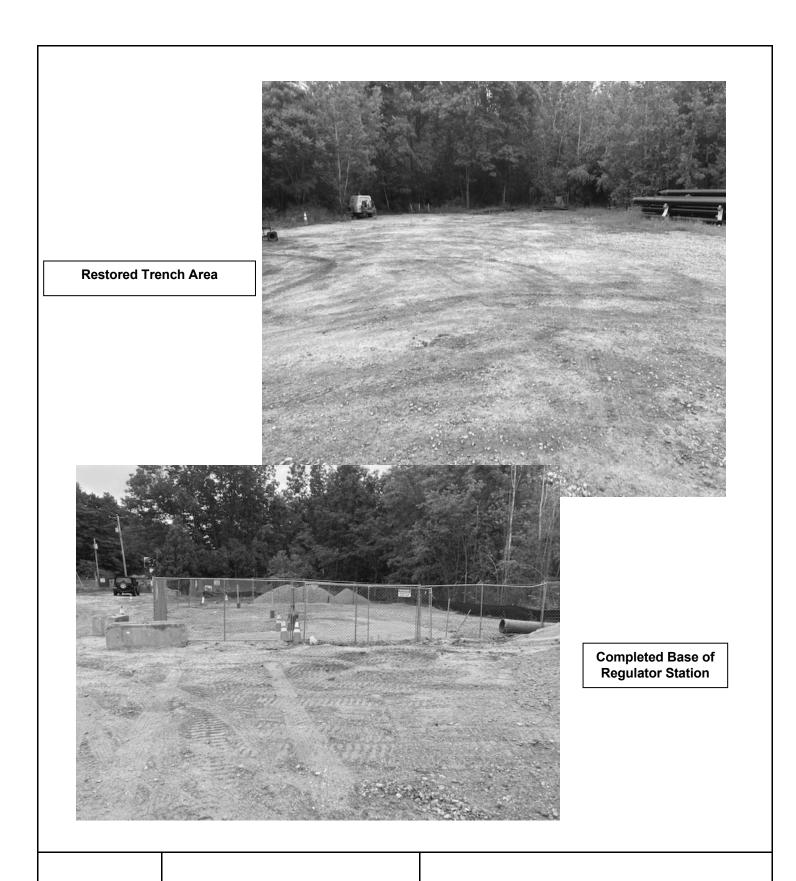

Exit Pit Container

AECOM

Until Corporation
Rochester MGP Utility Upgrade Project

HDD Drilling Mud Containers

Figure 4-1


AECOM

Primary Trench Area

Until Corporation
Rochester MGP Utility Upgrade Project

Regulator Station Piping

Figure 4-2

AECOM

Until Corporation
Rochester MGP Utility Upgrade Project

Restored Site

Figure 4-3

Tables

Table 4-1
Waste Profile Development
Soil - Horizontal Directional Drill Pit
Principal MGP Constituents and Detections
Rochester Former Manufacured Gas Plant Site

Sample Location Depths (below ground surface) Date Collected	NHDES Remediation Standards	HDD A 5-10 ft. 9/18/2020	HDD B 5-10 ft. 9/18/2020	HDD C 5-10 ft. 9/18/2020
Volatile Organic Compounds (ug/Kg)	•	-	-	
Benzene	300	<3.16	<2.97	<3.66
Toluene	100,000	<3.16	<2.97	<3.66
Ethylbenzene	120,000	<3.16	<2.97	<3.66
o-Xylene	500,000	<3.16	<2.97	<3.66
m-Xylene & p-Xylene	500,000	<6.31	<5.95	<7.33
Acetone	75,000	<31.6	<29.7	<36.6
Polycyclic Aromatic Hydrocarbons (ug	ı/Kg)			
2-Methylnaphthalene	96,000	73.6	<74.2	<76.9
Acenaphthene	340,000	NA	NA	NA
Acenaphthylene	490,000	<70.1	114	<76.9
Anthracene	1,000,000	91.8	247	<76.9
Benzo[a]anthracene	1,000	174	178	<76.9
Benzo[a]pyrene	700	192	262	<76.9
Benzo[b]fluoranthene	1,000	311	157	<76.9
Benzo[g,h,i]perylene		325	185	<76.9
Benzo[k]fluoranthene	12,000	211	122	<76.9
Chrysene	120,000	218	157	<76.9
Dibenz(a,h)anthracene	700	111	<74.2	<76.9
Fluoranthene	960,000	<70.1	<74.2	<76.9
Fluorene	77,000	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1,000	267	151	<76.9
Naphthalene	5,000	98.5	<74.2	<76.9
Phenanthrene		285	<74.2	<76.9
Pyrene	720,000	<70.1	<74.2	<76.9
Total Petroleum Hydrocarbons (mg/Kg))			
TPH 8100	10,000	26.2	39.9	<15.1
Inorganic Compounds (mg/Kg)				
Arsenic	11	9.3	7.62	5.98
Barium	1,000	45.9	25.5	20.4
Chromium	1000	11.7	8.84	7.03
Lead	400	39.2	5.21	3.36
Sulfur		158	60.9	83.8
Mercury	7	0.0417	< 0.0367	<0.0316
Reactive Cyanide		<10	<10	<10
Reactive Sulfde		<10	<10	<10

Notes:

ug/Kg - micrograms per kilogram mg/Kg - milligrams per kilogram

Table 4-2
Waste Profile Development
Drilling Mud - Horizontal Directional Drill
Rochester Former Manufactured Gas Plant Site

Parameters	Entry Pit (Site)	Exit Pit (Ballfield)
TCLP Volatile Organic Compound	ds (ug/l)	
Benzene	< 10.0	< 10.0
2-Butanone (MEK)	< 20.0	< 20.0
Carbon tetrachloride	< 10.0	< 10.0
Chlorobenzene	< 10.0	< 10.0
Chloroform	< 10.0	< 10.0
1,2-Dichloroethane	< 10.0	< 10.0
1,1-Dichloroethene	< 10.0	< 10.0
Tetrachloroethene	< 10.0	< 10.0
Trichloroethene	< 10.0	< 10.0
Vinyl chloride	< 10.0	< 10.0
TCLP Semi-Volatile Organic Com		
1,4-Dichlorobenzene	< 50.0	< 50.0
2,4-Dinitrotoluene	< 50.0	< 50.0
Hexachlorobenzene	< 50.0	< 50.0
Hexachlorobutadiene	< 50.0	< 50.0
Hexachloroethane	< 50.0	< 50.0
2-Methylphenol	< 50.0	< 50.0
3 & 4-Methylphenol	< 100	< 100
Nitrobenzene	< 50.0	< 50.0
Pentachlorophenol	< 200	< 200
Pyridine	< 50.0	< 50.0
2,4,5-Trichlorophenol	< 50.0	< 50.0
2,4,6-Trichlorophenol	< 50.0	< 50.0
Polychlorinated Biphenyls (ug/K		1 00.0
Aroclor-1016	< 82.0	< 26.3
Aroclor-1221	< 82.0	< 26.3
Aroclor-1232	< 82.0	< 26.3
Aroclor-1242	< 82.0	< 26.3
Aroclor-1248	< 82.0	< 26.3
Aroclor-1254	< 82.0	< 26.3
Aroclor-1254 Aroclor-1260	< 82.0	< 26.3
Aroclor-1262	< 82.0	< 26.3
Aroclor-1268	< 82.0	< 26.3
TCLP Metals (mg/l)	\ 0Z.0	\ 20.3
Silver	< 0.0100	< 0.0100
Arsenic	< 0.0800	< 0.0800
Barium	0.183	0.192
Cadmium		0.0050
Chromium	< 0.0050 < 0.0200	< 0.0050
Mercury	< 0.0200	0.0397 < 0.00070
Lead	0.0823	0.0654
Selenium	< 0.0300	< 0.0300
General Chemistry Parameters	40.0	50.0
Percent Solids (%)	18.2	56.8
pH	7.01	8.42
Total Solids @ 104C (%)	18.0	58.0
Reactivity Cyanide (mg/Kg)	< 27	< 8
Reactivity Sulfide (mg/Kg)	< 20	< 20
Reactivity	Negative	Negative

Notes:

ug/l - micrograms per liter ug/Kg - micrograms per kilogram mg/l - milligrams per liter mg/Kg - milligrams per kilogram

Table 4-3
Summary of Waste Disposal Quantities
Horizontal Directional Drilling
Rochester Former Manufactured Gas Plant Site

	cavation Pits Loudon, NH	Drilling Mud Tradebe, Newington, NH			
Ship Date	Tons	Ship Date	Tons		
12/29/2020	12.09	1/2/2021	11.29		
1/12/2021	17.3	1/5/2021	4.32		
	15.3]			
	15.74	1/13/2021	5.49		
1/13/2021	15.34	1/15/2021	12.34		
	16.64				
	16.83	1			
1/14/2021	10.86	1			
	9.03	1			
	16.32	1			
1/15/2021	11.23	1			
	9.84	1			
Total	166.5	Total	33.4		

Table 4-4
Waste Profile Development
Soil - Regulator Station Piping
Principal MGP Constituents and Detections
Rochester Former Manufacured Gas Plant Site

Sample Location	NHDES	Trench A	Trench B	Trench C	Trench D	Trench E	Trench F	Trench G	Trench H	
Depths (below ground surface)	Remediation	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	
Date Collected	Standards	9/18/2020	9/18/2020	9/18/2020	9/18/2020	5/5/2021	5/5/2021	5/6/2021	5/6/2021	
Volatile Organic Compounds (ug/Kg)										
Benzene	300	<4.34	<5.65	<3.36	<3.10	< 4 85	< 5 52	< 6.23	< 4.95	
Toluene	100,000	<4.34	<5.65	<3.36	<3.10	< 4 85	< 5 52	< 6.23	< 4.95	
Ethylbenzene	120,000	<4.34	<5.65	<3.36	<3.10	< 4 85	< 5 52	< 6.23	< 4.95	
o-Xylene	500,000	<4.34	<5.65	<3.36	<3.10	< 4 85	< 5 52	< 6.23	< 4.95	
m-Xylene & p-Xylene	500,000	<8.69	<11.37	<7.37	<6.21	< 9 69	< 11 0	< 12.5	<9.90	
Acetone	75,000	<4.34	<56.5	<36.9	36.3	< 48 5	< 5 52	< 62.3	< 49.5	
Polycyclic Aromatic Hydrocarbo	ns (ug/Kg)	•			•	•	•	•		
2-Methylnaphthalene	96,000	<376	<67.9	<355	96.2	< 78 2	< 75 0	< 76.9	< 77.2	
Acenaphthene	340,000	NA	NA	NA	NA	< 78 2	NA	NA	NA	
Acenaphthylene	490,000	527	<67.9	1420	77.4	< 78 2	< 75 0	< 76.9	< 77.2	
Anthracene	1,000,000	<376	<67.9	1100	134	< 78 2	< 75 0	< 76.9	< 77.2	
Benzo[a]anthracene	1,000	1050	<67.9	6,460	279	152	131	118	159	
Benzo[a]pyrene	700	1290	<67.9	6,640	318	136	115	99.6	141	
Benzo[b]fluoranthene	1,000	980	<67.9	8,170	476	160	121	109	173	
Benzo[g,h,i]perylene		1090	<67.9	9,550	508	122	109	90.0	136	
Benzo[k]fluoranthene	12,000	909	<67.9	3,640	188	104	99.8	97.3	122	
Chrysene	120,000	1010	<67.9	6,770	310	184	155	142	204	
Dibenz(a,h)anthracene	700	<376	<67.9	2450	159	< 78 2	< 75 0	< 76.9	< 77.2	
Fluoranthene	960,000	848	<67.9	6,580	107	242	222	226	307	
Fluorene	77,000	NA	NA	NA	NA	< 78 2	NA	NA	NA	
Indeno[1,2,3-cd]pyrene	1,000	905	<67.9	7,620	395	108	96.8	84.2	124	
Naphthalene	5,000	<376	<67.9	<355	120	< 78 2	< 75 0	< 76.9	< 77.2	
Phenanthrene		455	<67.9	1720	303	82.8	79.1	91.9	118	
Pyrene	720,000	835	<67.9	6,930	109	303	288	256	347	
Total Petroleum Hydrocarbons (r	ng/Kg)									
TPH 8100	10,000	231	<13.8	1220	39.4	74.7	68.1	35.1	70.2	
Inorganic Compounds (mg/Kg)										
Arsenic	11	23.3	20	11.1	6.56	14.1	19.9	9.75	10.3	
Barium	1,000	55.5	24	38.4	57.2	56.8	56.6	33.4	32.2	
Chromium	1000	17.7	11.1	10.1	12.3	17.3	18.4	9.9	10.4	
Lead	400	20.1	5.13	44.2	43.9	13.0	12.5	13.2	11.2	
Sulfur		184	107	318	174	163	150	162	197	
Mercury	7	0.0527	<0.0312	0.087	0.0974	< 0 0380	< 0 0385	< 0 0388	< 0 0338	
Reactive Cyanide		<10	<10	<10	<10	<6	<6	< 12	< 11	
Reactive Sulfde		<10	<10	<10	<10	<20	<20	< 20	< 20	

Notes:

ug/Kg - micrograms per kilogram mg/Kg - milligrams per kilogram

Table 4-5
Summary of Waste Disposal Quantities
Regulator Station Piping
Rochester Former Manufactured Gas Plant Site

Soil from Pipe Trenching - Clean Earth, Loudon. NH								
April		May	<u> </u>	Ju	ne	Aug	ust	
Ship Date	Tons	Ship Date	Tons	Ship Date	Tons	Ship Date	Tons	
4/7/2021	34.7	5/3/2021	52.4	6/1/2021	49.6	8/16/2021	14.6	
4/8/2021	61.7	5/4/2021	58.4	6/2/2021	52.0	8/19/2021	10.00	
4/9/2021	57.5	5/5/2021	58.3	6/3/2021	4.0			
4/12/2021	60.9	5/6/2021	52.1	6/9/2021	20.5			
4/13/2021	54.5	5/13/2021	30.1	6/10/2021	18.8			
4/14/2021	63.2			6/11/2021	22.7			
4/15/2021	60.9			6/14/2021	50.1			
4/16/2021	41.6			6/16/2021	36.1			
4/19/2021	66.9			6/17/2021	19.7			
4/20/2021	61.3			6/30/2021	24.1			
4/21/2021	60.5							
4/22/2021	85.1							
4/26/2021	59.3							
4/27/2021	53.0							
4/28/2021	55.9							
4/29/2021	56.8							
4/40/2021	54.0							
Total	987.8	Total	251.3	Total	297.6	Total	24.6	

Appendix A Laboratory Report - Soil Characterization HDD Entry/Exit Pits

ENVIRONMENTAL SOIL MANAGEMENT COMPANIES Generator Waste Profile

ESMI Customer: NRC East Environmental Ser	Purchase Order # 160370					
Customer Address: 114 Bridge Rd City: Salisbury State: MA Zip:						
Contact: Tim Warr	Tel: 603-770-2988	Fax:				
Site Contact: Mark McCabe, AECOM	Tel: 978-905-2311	Cell: 50	08-423-9018			
Site Name: Unitil Former MGP Site	Site Tel: N/A					
Site Address: Route 125	City: Rochester	State: NH	Zip: 03839			
History of Site Use: Residential Comme		Other:				
If commercial, industrial or other, please describe histo	ry of site:					
Former MGP site.						
Event/process generating waste: Leaking UST	Leaking AST Surface Spi	ill other(des	cribe):			
Former MPG site.						
Waste Material Description: Soil/media is contain	ninated with: (Check All That A	Apply)				
NON-HAZARDOUS <i>VIRGIN PETROLEUM</i>		FF 37				
		Vegetable/Tall	oils White Oil			
☐ Kerosene ☐ Mixed Fuels (gas/fuel oil) ☐ Pe	·		1			
NON-HAZARDOUS NON-VIRGIN PETROL			7 4 44 -44			
Used Oils Grease/Lubes Used Animal/						
☐ Lubricating Oils ☐ Metal Working Oils ☐ In ☐ Transformer Oil (non-PCB) ☐ Urban Fill	ildustriai Olis 🔝 Osed Petroleur	ii Soiveiii Ei	Eurcai On			
NON-HAZARDOUS <i>COAL TAR or PCB</i> CO	NTAMINATED SOIL					
■ Coal Tar □PCB's (<50ppm; Not PCB Re						
NON-HAZARDOUS DREDGE CONTAMIN	` _	ntaminant)				
Dredge Soil associated with Upland Remedi		11 4 10 NI	O E VEG			
Are there any known or suspected past releases of c If YES, Specify:	ontaminants other than the al	bove listed? No	J YES			
Approximate Tonnage: 300						
Physical Characteristics: %Gravel 40 %Sand 40	%Clay/Silt_20_% H20_	%Debris 0	$\sum =100\%$			
Describe Debris:						
I hereby certify, to the best of my knowledge, (a) I am a responsible official of the generator, (b) that the sampling requirements,						
pursuant to Env-Or 611.04(NH only), and any additional sampling required by the state of origin, has been adhered to, (c) that						
the information provided in the profile is correct and complete, (d) that the transport, treatment and recycling of the contaminated						
materials do not violate any laws or regulations of the state of origin.						
Signature:	Date: 12/2	23/2020				
Typed/Printed Name: Mark McCabe	Company:	AECOM				
Check One: Owner: Generator: Contractor: Consultant: Other (explain):						

Acceptance of all projects is predicated on the review of this form and the analytical results of the material to be received.

ESMI of New Hampshire

67 International Drive Loudon, New Hampshire 03307 Phone: 603.783.0228

Fax: 603.783.0104

ESMI of New York 304 Towpath Road Fort Edward, New York 12828 Phone: 518.747.5500

Fax: 518.747.1181

Table 1 Summary of Results Former MGP Site Rochester, NH Principal MGP Constituents and Detections Waste Profile Development

		Regulator St	ation Piping	HDD Area			
Sample Location	Trench A	Trench B	Trench C	Trench D	HDD A	HDD B	HDD C
Depths (below ground surface)	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	5-10 ft.	5-10 ft.	5-10 ft.
Date Collected	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020
Volatile Organic Compounds (ug/Kg	g)						
Benzene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
Toluene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
Ethylbenzene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
o-Xylene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
m-Xylene & p-Xylene	<8.69	<11.37	<7.37	<6.21	<6.31	<5.95	<7.33
Acetone	<4.34	<56.5	<36.9	36.3	<31.6	<29.7	<36.6
Polycyclic Aromatic Hydrocarbons	(ug/Kg)						
2-Methylnaphthalene	<376	<67.9	<355	96.2	73.6	<74.2	<76.9
Acenaphthylene	527	<67.9	1420	77.4	<70.1	114	<76.9
Anthracene	<376	<67.9	1100	134	91.8	247	<76.9
Benzo[a]anthracene	1050	<67.9	6,460	279	174	178	<76.9
Benzo[a]pyrene	1290	<67.9	6,640	318	192	262	<76.9
Benzo[b]fluoranthene	980	<67.9	8,170	476	311	157	<76.9
Benzo[g,h,i]perylene	1090	<67.9	9,550	508	325	185	<76.9
Benzo[k]fluoranthene	909	<67.9	3,640	188	211	122	<76.9
Chrysene	1010	<67.9	6,770	310	218	157	<76.9
Dibenz(a,h)anthracene	<376	<67.9	2450	159	111	<74.2	<76.9
Fluoranthene	848	<67.9	6,580	107	<70.1	<74.2	<76.9
Indeno[1,2,3-cd]pyrene	905	<67.9	7,620	395	267	151	<76.9
Naphthalene	<376	<67.9	<355	120	98.5	<74.2	<76.9
Phenanthrene	455	<67.9	1720	303	285	<74.2	<76.9
Pyrene	835	<67.9	6,930	109	<70.1	<74.2	<76.9
Total Petroleum Hydrocarbons (mg.	/Kg)						
TPH 8100	231	<13.8	1220	39.4	26.2	39.9	<15.1
Inorganic Compounds (mg/Kg)							
Arsenic	23.3	20	11.1	6.56	9.3	7.62	5.98
Barium	55.5	24	38.4	57.2	45.9	25.5	20.4
Chromium	17.7	11.1	10.1	12.3	11.7	8.84	7.03
Lead	20.1	5.13	44.2	43.9	39.2	5.21	3.36
Sulfur	184	107	318	174	158	60.9	83.8
Mercury	0.0527	<0.0312	0.087	0.0974	0.0417	<0.0367	< 0.0316
Reactive Cyanide	<10	<10	<10	<10	<10	<10	<10
Reactive Sulfde	<10	<10	<10	<10	<10	<10	<10

V	Final Report
	Revised Report

Report Date: 29-Sep-20 15:34

Laboratory Report SC59391

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Rochester NH MGP Project #: 60139732*2900

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignes R Dun

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 78 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC59391

Project: Rochester NH MGP

Project Number: 60139732*2000

Project Number: 60139732*2900

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC59391-01	TrenchA_0-6	Soil	18-Sep-20 08:50	21-Sep-20 16:40
SC59391-02	TrenchB_0-6	Soil	18-Sep-20 09:10	21-Sep-20 16:40
SC59391-03	TrenchD_0-6	Soil	18-Sep-20 10:09	21-Sep-20 16:40
SC59391-04	TrenchC_0-6	Soil	18-Sep-20 09:42	21-Sep-20 16:40
SC59391-05	HDDB_5-10	Soil	18-Sep-20 11:10	21-Sep-20 16:40
SC59391-06	HDDA_5-10	Soil	18-Sep-20 10:40	21-Sep-20 16:40
SC59391-07	HDDC_5-10	Soil	18-Sep-20 11:38	21-Sep-20 16:40
SC59391-08	Trip Blank	Trip Blank	18-Sep-20 00:00	21-Sep-20 16:40

29-Sep-20 15:34 Page 2 of 78

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

8260 Low Level Soil:

The original analysis of sample SC59391-02(B) yielded invalid results due to a poor purge of the sample vial. The second vial (C) was cracked upon thawing from the freezer and could not be used. A fresh sample was made (F) for the bulk soil container (D) and analyzed.

The analyte 2-Butanone (MEK) is identified as a problematic compound when purging a low level soil and failed in the initial calibration. As a result, the samples were analyzed and reported for MEK for a high level soil analysis.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

2001784-MS1 Source: SC59391-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Silver

2001784-MSD1 Source: SC59391-01

This laboratory report is not valid without an authorized signature on the cover page.

SW846 6010C

Spikes:

2001784-MSD1 Source: SC59391-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Silver

SW846 8100Mod.

Samples:

SC59391-01 TrenchA 0-6

The Reporting Limit has been raised to account for matrix interference.

SC59391-04 TrenchC 0-6

The Reporting Limit has been raised to account for matrix interference.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

1-Chlorooctadecane

SW846 8260C LLS

Laboratory Control Samples:

2001826 BS/BSD

Acetone percent recoveries (52/52) are outside individual acceptance criteria (70-130), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB_5-10

HDDC 5-10

 $TrenchA_0-6$

TrenchC_0-6

TrenchD 0-6

Trip Blank

Chloroethane percent recoveries (513/515) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

HDDA_5-10

HDDB_5-10

HDDC_5-10

TrenchA_0-6

 $TrenchC_0-6$

TrenchD 0-6

Trip Blank

Ethanol percent recoveries (52/73) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC_5-10

TrenchA_0-6

TrenchC_0-6

TrenchD_0-6

Trip Blank

2001826 BSD

SW846 8260C LLS

Laboratory Control Samples:

2001826 BSD

Ethanol RPD 34% (30%) is outside individual acceptance criteria.

2001826-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Ethanol

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001826-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Ethanol

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001880 BS/BSD

Acetone percent recoveries (39/50) are outside individual acceptance criteria (70-130), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

 $TrenchB_0\text{-}6$

Chloroethane percent recoveries (525/541) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

TrenchB_0-6

2001880-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001880-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

Samples:

SC59391-01 TrenchA_0-6

Internal standard out due to matrix interference

SW846 8260C LLS

Samples:

SC59391-03 TrenchD 0-6

Internal standard out due to matrix interference

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

4-Bromofluorobenzene

SC59391-04

TrenchC 0-6

Internal standard out due to matrix interference

SC59391-05

HDDB 5-10

Internal standard out due to matrix interference

SC59391-06

HDDA 5-10

Internal standard out due to matrix interference

SC59391-07

HDDC_5-10

Internal standard out due to matrix interference

SW846 8270D

Laboratory Control Samples:

2001800 BS/BSD

4-Bromophenyl phenyl ether percent recoveries (20/21) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC 5-10

TrenchA 0-6

TrenchB 0-6

TrenchC 0-6

TrenchD 0-6

Aniline percent recoveries (39/41) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB_5-10

HDDC 5-10

TrenchA_0-6

TrenchB_0-6

 $TrenchC_0\text{-}6$

TrenchD_0-6

SW846 8270D

Laboratory Control Samples:

2001800 BS/BSD

Benzidine percent recoveries (13/13) are outside individual acceptance criteria (40-140), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB_5-10

HDDC_5-10

TrenchA 0-6

TrenchB 0-6

TrenchC_0-6

TrenchD 0-6

Benzoic acid percent recoveries (16/19) are outside individual acceptance criteria (30-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC_5-10

TrenchA 0-6

TrenchB_0-6

TrenchC_0-6 TrenchD 0-6

Pyridine percent recoveries (33/43) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA 5-10

HDDB_5-10

HDDC 5-10

TrenchA 0-6

TrenchB 0-6

TrenchC 0-6

TrenchD 0-6

2001800-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

4-Bromophenyl phenyl ether

Aniline

Benzidine

Benzoic acid

Pyridine

2001800-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

4-Bromophenyl phenyl ether

Benzidine

Benzoic acid

Duplicates:

2001800-DUP1 Source: SC59391-01

Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results

Phenanthrene

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Benzo (k) fluoranthene

SW846 8270D

Duplicates:

2001800-DUP1 Source: SC59391-01

The Reporting Limit has been raised to account for matrix interference.

Samples:

SC59391-01 TrenchA 0-6

The Reporting Limit has been raised to account for matrix interference.

SC59391-04 TrenchC 0-6

The Reporting Limit has been raised to account for matrix interference.

29-Sep-20 15:34 Page 8 of 78

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Rochester NH MGP / 60139732*2900
Work Order:	SC59391

9/21/2020

Sample(s) received on:

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	<u>/</u>		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	√		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?			

Summary of Hits

Lab ID: SC59391-01

Client ID:	TrenchA	0-6
Chent ID:	HelichA	0-0

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	23.3		1.84	mg/kg	SW846 6010C
Barium	55.5		1.22	mg/kg	SW846 6010C
Chromium	17.7		1.22	mg/kg	SW846 6010C
Lead	20.1		1.84	mg/kg	SW846 6010C
Sulfur	184		30.6	mg/kg	SW846 6010C
Mercury	0.0527		0.0375	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	231		30.7	mg/kg	SW846 8100Mod.
Acenaphthylene	527		376	μg/kg	SW846 8270D
Benzo (a) anthracene	1050		376	μg/kg	SW846 8270D
Benzo (a) pyrene	1290		376	μg/kg	SW846 8270D
Benzo (b) fluoranthene	980		376	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	1090		376	μg/kg	SW846 8270D
Benzo (k) fluoranthene	909		376	μg/kg	SW846 8270D
Chrysene	1010		376	μg/kg	SW846 8270D
Fluoranthene	848		376	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	905		376	μg/kg	SW846 8270D
Phenanthrene	455		376	μg/kg	SW846 8270D
Pyrene	835		376	μg/kg	SW846 8270D

Lab ID: SC59391-02

Client ID: TrenchB 0-6

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	20.0		1.65	mg/kg	SW846 6010C
Barium	24.0		1.10	mg/kg	SW846 6010C
Chromium	11.1		1.10	mg/kg	SW846 6010C
Lead	5.13		1.65	mg/kg	SW846 6010C
Sulfur	107		27.5	mg/kg	SW846 6010C

29-Sep-20 15:34 Page 10 of 78

Lab ID: SC59391-03

Client ID: TrenchD_0-6

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	6.56		1.54	mg/kg	SW846 6010C
Barium	57.2		1.03	mg/kg	SW846 6010C
Chromium	12.3		1.03	mg/kg	SW846 6010C
Lead	43.9		1.54	mg/kg	SW846 6010C
Sulfur	174		25.7	mg/kg	SW846 6010C
Mercury	0.0974		0.0296	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	39.4		13.4	mg/kg	SW846 8100Mod.
Acetone	36.3		31.0	μg/kg	SW846 8260C LLS
2-Methylnaphthalene	96.2		71.0	$\mu g/kg$	SW846 8270D
Acenaphthylene	77.4		71.0	$\mu g/kg$	SW846 8270D
Anthracene	134		71.0	$\mu g/kg$	SW846 8270D
Benzo (a) anthracene	279		71.0	$\mu g/kg$	SW846 8270D
Benzo (a) pyrene	318		71.0	$\mu g/kg$	SW846 8270D
Benzo (b) fluoranthene	476		71.0	$\mu g/kg$	SW846 8270D
Benzo (g,h,i) perylene	508		71.0	$\mu g/kg$	SW846 8270D
Benzo (k) fluoranthene	188		71.0	$\mu g/kg$	SW846 8270D
Chrysene	310		71.0	$\mu g/kg$	SW846 8270D
Dibenzo (a,h) anthracene	159		71.0	$\mu g/kg$	SW846 8270D
Fluoranthene	107		71.0	$\mu g/kg$	SW846 8270D
Indeno (1,2,3-cd) pyrene	395		71.0	$\mu g/kg$	SW846 8270D
Naphthalene	120		71.0	$\mu g/kg$	SW846 8270D
Phenanthrene	303		71.0	$\mu g/kg$	SW846 8270D
Pyrene	109		71.0	$\mu g/kg$	SW846 8270D

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	11.1		1.72	mg/kg	SW846 6010C
Barium	38.4		1.15	mg/kg	SW846 6010C
Chromium	10.1		1.15	mg/kg	SW846 6010C
Lead	44.2		1.72	mg/kg	SW846 6010C
Sulfur	318		28.7	mg/kg	SW846 6010C
Mercury	0.0870		0.0306	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	1220		27.3	mg/kg	SW846 8100Mod.
Acenaphthylene	1420		355	μg/kg	SW846 8270D
Anthracene	1100		355	μg/kg	SW846 8270D
Benzo (a) anthracene	6460		355	μg/kg	SW846 8270D
Benzo (a) pyrene	6640		355	μg/kg	SW846 8270D
Benzo (b) fluoranthene	8170		355	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	9550		355	μg/kg	SW846 8270D
Benzo (k) fluoranthene	3640		355	μg/kg	SW846 8270D
Chrysene	6770		355	μg/kg	SW846 8270D
Dibenzo (a,h) anthracene	2450		355	μg/kg	SW846 8270D
Fluoranthene	6580		355	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	7620		355	μg/kg	SW846 8270D
Phenanthrene	1720		355	μg/kg	SW846 8270D
Pyrene	6930		355	μg/kg	SW846 8270D
Lab ID: SC59391-05			Client ID: HDDB_	5-10	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	7.62		1.79	mg/kg	SW846 6010C
Barium	25.5		1.19	mg/kg	SW846 6010C
Chromium	8.84		1.19	mg/kg	SW846 6010C
Lead	5.21		1.79	mg/kg	SW846 6010C
Sulfur	60.9		29.8	mg/kg	SW846 6010C
Total Petroleum Hydrocarbons	39.9		14.7	mg/kg	SW846 8100Mod.
Acenaphthylene	114		74.2	μg/kg	SW846 8270D
Anthracene	247		74.2	μg/kg	SW846 8270D
Benzo (a) anthracene	178		74.2	μg/kg	SW846 8270D
Benzo (a) pyrene	262		74.2	μg/kg	SW846 8270D
			74.2	μg/kg	SW846 8270D
Benzo (b) fluoranthene	157				
* *	157 185		74.2	μg/kg	SW846 8270D
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene				μg/kg μg/kg	SW846 8270D SW846 8270D
Benzo (g,h,i) perylene	185		74.2		

Parameter	Result Flag Reporting Limit Un		Units	Analytical Method	
Arsenic	9.30		1.66	mg/kg	SW846 6010C
Barium	45.9		1.11	mg/kg	SW846 6010C
Chromium	11.7		1.11	mg/kg	SW846 6010C
Lead	39.2		1.66	mg/kg	SW846 6010C
Sulfur	158		27.7	mg/kg	SW846 6010C
Mercury	0.0417		0.0310	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	26.2		13.7	mg/kg	SW846 8100Mod.
2-Methylnaphthalene	73.6		70.1	μg/kg	SW846 8270D
Anthracene	91.8		70.1	μg/kg	SW846 8270D
Benzo (a) anthracene	174		70.1	μg/kg	SW846 8270D
Benzo (a) pyrene	192		70.1	μg/kg	SW846 8270D
Benzo (b) fluoranthene	311		70.1	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	325		70.1	μg/kg	SW846 8270D
Benzo (k) fluoranthene	211		70.1	μg/kg	SW846 8270D
Chrysene	218		70.1	μg/kg	SW846 8270D
Dibenzo (a,h) anthracene	111		70.1	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	267		70.1	μg/kg	SW846 8270D
Naphthalene	98.5		70.1	μg/kg	SW846 8270D
Phenanthrene	285		70.1	μg/kg	SW846 8270D
Lab ID: SC59391-07			Client ID: HDDC_:	5-10	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method

Parameter	Result	Flag Reporting Limit	Units	Analytical Method	
Arsenic	5.98	1.95	mg/kg	SW846 6010C	
Barium	20.4	1.30	mg/kg	SW846 6010C	
Chromium	7.03	1.30	mg/kg	SW846 6010C	
Lead	3.36	1.95	mg/kg	SW846 6010C	
Sulfur	83.8	32.4	mg/kg	SW846 6010C	

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

29-Sep-20 15:34 Page 13 of 78

Sample Id TrenchA	lentification 0-6			Client Pr	roject #		Matrix	Colle	ection Date	/Time		eceived	
SC59391-01		60139732*2900			Soil		18-Sep-20 08:50			21-Sep-20			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SW by method SW846 5035A					Init	ial waight:	22.22.4					
78-93-3	2-Butanone (MEK)	< 93.9 D)	μg/kg dry	93.9	21.4	ial weight: 50	22.23 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	111			70-13	0 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	104			70-13	0 %		"	"	"	"	"	
Volatile Or	rganic Compounds by SW	846 8260	IS1										
Prepared	by method SW846 5035A	Soil (low level)				<u>Init</u>	ial weight:	6.66 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.34		μg/kg dry	4.34	2.83	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 43.4		μg/kg dry	43.4	9.73	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 4.34		μg/kg dry	4.34	2.61	1	"	"	"	"	"	X
71-43-2	Benzene	< 4.34		μg/kg dry	4.34	2.90	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 4.34		μg/kg dry	4.34	2.89	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 4.34		μg/kg dry	4.34	2.47	1	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 4.34		μg/kg dry	4.34	3.19	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 4.34		μg/kg dry	4.34	3.32	1	"	"	"	"		Х
74-83-9	Bromomethane	< 8.69		μg/kg dry	8.69	1.42	1		"	"	"		X
104-51-8	n-Butylbenzene	< 8.69		μg/kg dry	8.69	4.66	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 4.34		μg/kg dry	4.34	3.50	1		"	"	"		X
98-06-6	tert-Butylbenzene	< 4.34		μg/kg dry	4.34	3.42	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 8.69		μg/kg dry	8.69	3.05	1		"	"	"		X
56-23-5	Carbon tetrachloride	< 4.34		μg/kg dry	4.34	2.74	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 4.34		μg/kg dry	4.34	3.18	1	"	"	"	"		Х
75-00-3	Chloroethane	< 8.69		μg/kg dry	8.69	3.19	1	"	"	"	"		Х
67-66-3	Chloroform	< 4.34		μg/kg dry	4.34	2.92	1	"	"	"	"		Х
74-87-3	Chloromethane	< 8.69		μg/kg dry	8.69	3.34	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 4.34		μg/kg dry	4.34	3.46	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 4.34		μg/kg dry	4.34	3.77	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 8.69		μg/kg dry	8.69	3.68	1	"	"	"	"	"	X
124-48-1	Dibromochloromethane	< 4.34		μg/kg dry	4.34	2.88	1	"	u u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.34		μg/kg dry	4.34	3.12	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 4.34		μg/kg dry	4.34	2.55	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.34		μg/kg dry	4.34	4.03	1	"	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	< 4.34		μg/kg dry	4.34	3.48	1	"	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	< 4.34		μg/kg dry	4.34	4.12	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.69		μg/kg dry	8.69	2.33	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.34		μg/kg dry	4.34	2.95	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 4.34		μg/kg dry	4.34	2.93	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.34		μg/kg dry	4.34	2.66	1	"	"	"		"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.34		μg/kg dry	4.34	2.51	1	"	"	"		"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.34		μg/kg dry	4.34	2.70	1	"	"	"		"	Х
78-87-5	1,2-Dichloropropane	< 4.34		μg/kg dry	4.34	2.88	1	"	"	"		"	Х
142-28-9	1,3-Dichloropropane	< 4.34		μg/kg dry	4.34	3.32	1		"		"		Х

TrenchA_ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil	·	ection Date 3-Sep-20 08			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>	IS1										
594-20-7	2,2-Dichloropropane	< 4.34		μg/kg dry	4.34	<u>Init</u> 3.00	ial weight: 1	6.66 g SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	x
563-58-6	1,1-Dichloropropene	< 4.34		μg/kg dry	4.34	2.95	1	"	"		"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.34		μg/kg dry	4.34	2.83	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.34		μg/kg dry	4.34	3.30	1	"	"	u u	"	"	Х
100-41-4	Ethylbenzene	< 4.34		μg/kg dry	4.34	3.10	1	п	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 8.69		μg/kg dry	8.69	4.37	1	п	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 8.69		μg/kg dry	8.69	2.55	1		"	"	"		Х
98-82-8	Isopropylbenzene	< 4.34		μg/kg dry	4.34	3.28	1		"	"	"		Х
99-87-6	4-Isopropyltoluene	< 4.34		μg/kg dry	4.34	4.27	1		"	"	"		Х
1634-04-4	Methyl tert-butyl ether	< 4.34		μg/kg dry	4.34	2.41	1	"	"	"	"		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 8.69		μg/kg dry	8.69	2.81	1	"	n	u u	"	"	Х
75-09-2	Methylene chloride	< 8.69		μg/kg dry	8.69	2.33	1	"	"	"	"		Х
91-20-3	Naphthalene	< 4.34		μg/kg dry	4.34	3.93	1	"	"	"	"		Х
103-65-1	n-Propylbenzene	< 4.34		μg/kg dry	4.34	3.68	1	"	"	"	"		Х
100-42-5	Styrene	< 4.34		μg/kg dry	4.34	3.36	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 4.34		μg/kg dry	4.34	3.26	1		"	"	"		Х
79-34-5	1,1,2,2-Tetrachloroethane	< 4.34		μg/kg dry	4.34	3.98	1		"	"	"		Х
127-18-4	Tetrachloroethene	< 4.34		μg/kg dry	4.34	2.42	1		"	"	"		Х
108-88-3	Toluene	< 4.34		μg/kg dry	4.34	2.75	1		"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 4.34		μg/kg dry	4.34	3.67	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 4.34		μg/kg dry	4.34	4.01	1		"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 4.34		μg/kg dry	4.34	4.13	1		"	"	"		
71-55-6	1,1,1-Trichloroethane	< 4.34		μg/kg dry	4.34	2.96	1	"	"	"	"		Х
79-00-5	1,1,2-Trichloroethane	< 4.34		μg/kg dry	4.34	3.28	1	"	"		"		Х
79-01-6	Trichloroethene	< 4.34		μg/kg dry	4.34	2.92	1	"	"		"		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 4.34		μg/kg dry	4.34	3.32	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 4.34		μg/kg dry	4.34	3.82	1	"	"	"	"		Х
95-63-6	1,2,4-Trimethylbenzene	< 4.34		μg/kg dry	4.34	3.68	1	"	"		"		Х
108-67-8	1,3,5-Trimethylbenzene	< 4.34		μg/kg dry	4.34	3.69	1	"	"		"		Х
75-01-4	Vinyl chloride	< 4.34		μg/kg dry	4.34	2.65	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 8.69		μg/kg dry	8.69	5.94	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 4.34		μg/kg dry	4.34	3.17	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 8.69		μg/kg dry	8.69	2.20	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 4.34		μg/kg dry	4.34	2.29	1		"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 4.34		μg/kg dry	4.34	3.43	1	"	n n		"	"	
637-92-3	Ethyl tert-butyl ether	< 4.34		μg/kg dry	4.34	2.86	1	"	n n	"	"	"	
108-20-3	Di-isopropyl ether	< 4.34		μg/kg dry	4.34	3.10	1	"	n n	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 86.9		μg/kg dry	86.9	23.3	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 86.9		μg/kg dry	86.9	27.0	1	"	"	"	"	"	X
110-57-6	trans-1,4-Dichloro-2-buten e	< 21.7		μg/kg dry	21.7	3.21	1	"	"	"	"	"	X
64-17-5	Ethanol	< 869		μg/kg dry	869	53.9	1		"	"	"		

Sample Identification

Sample Id TrenchA			<u>Client F</u> 6013973	Project # 32*2900		<u>Matrix</u> Soil		ection Date 3-Sep-20 08			ceived Sep-20	
CAS No.	Analyte(s)	Result Fl	ag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS										
Semivola	tile Organic Compounds	R	01									
4165-60-0	Nitrobenzene-d5	88		30-13	30 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	86		30-13	30 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	72		30-13	30 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	72		30-13	30 %			"	"	"	"	
Extractab	le Petroleum Hydrocarbon	ıs										
Fingerprir	nting by GC	R	01									
Prepared	by method SW846 3546											
	Total Petroleum Hydrocarbons	231	mg/kg dry	30.7	25.6	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	77		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	101		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Serie by method SW846 3050											
7440-22-4	Silver	< 3.67	mg/kg dry	3.67	0.198	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	23.3	mg/kg dry	1.84	0.233	1	"	"	23-Sep-20	"		Χ
7440-39-3	Barium	55.5	mg/kg dry	1.22	0.144	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.612	mg/kg dry	0.612	0.0317	1	"	"	"	"		Χ
7440-47-3	Chromium	17.7	mg/kg dry	1.22	0.163	1	"	"	"	"	"	Χ
7439-97-6	Mercury	0.0527	mg/kg dry	0.0375	0.0104	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
Prepared	by method SW846 3050	<u>B</u>										
7439-92-1	Lead	20.1	mg/kg dry	1.84	0.259	1	SW846 6010C	"	28-Sep-20	PMH/ED	Γ2001784	Χ
7782-49-2	Selenium	< 1.84	mg/kg dry	1.84	0.350	1	"	"	"	"	"	Χ
7704-34-9	Sulfur	184	mg/kg dry	30.6	2.10	1	"	"	23-Sep-20	"	"	
General C	Chemistry Parameters											
	% Solids	86.4	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	octed Analyses by method 7.3.3											
Analysis p	erformed by Eurofins TestAn	nerica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:36	2337	551420	
Prepared	by method 7.3.4						N					

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 18 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

TrenchB_ SC59391-	_		<u>Client Pr</u> 6013973			<u>Matrix</u> Soil		ection Date 3-Sep-20 09			Sep-20	
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Oi	rganic Compounds											
Volatile O	rganic Compounds by SW											
<u>Prepared</u> 78-93-3	by method SW846 5035A 2-Butanone (MEK)	Soil (high level) < 60.3 D	μg/kg dry	60.3	<u>Init</u> 13.8	tial weight: 50	27.33 g SW846 8260C	23-Sen-20	23-Sep-20	DDP	2001812	×
	· · ·	- 00.0	pg/kg dry		10.0			20 OCP 20	20-00p-20		2001012	
Surrogate r		0.4		70.40	20.07		"				"	
460-00-4	4-Bromofluorobenzene	94		70-13						"		
2037-26-5	Toluene-d8	110		70-13						"		
17060-07-0	1,2-Dichloroethane-d4	115		70-13							,,	
1868-53-7	Dibromofluoromethane	104		70-13	30 %		-					
	rganic Compounds by SW by method SW846 5035A				Init	tial weight:	4 58 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.65	μg/kg dry	5.65	3.68	1	SW846 8260C LLS	28-Sep-20	29-Sep-20	MED	2001880	X
67-64-1	Acetone	< 56.5	μg/kg dry	56.5	12.7	1	"	"		"		Х
107-13-1	Acrylonitrile	< 5.65	μg/kg dry	5.65	3.39	1	"	"	"	"		Х
71-43-2	Benzene	< 5.65	μg/kg dry	5.65	3.77	1	"	"		"		Х
108-86-1	Bromobenzene	< 5.65	μg/kg dry	5.65	3.76	1	"	"	"	"		Х
74-97-5	Bromochloromethane	< 5.65	μg/kg dry	5.65	3.21	1	"	"		"		Х
75-27-4	Bromodichloromethane	< 5.65	μg/kg dry	5.65	4.15	1	"	"	"	"		Х
75-25-2	Bromoform	< 5.65	μg/kg dry	5.65	4.32	1	"	"	"	"	"	Х
4-83-9	Bromomethane	< 11.3	μg/kg dry	11.3	1.84	1	"	"	"	"	"	Х
04-51-8	n-Butylbenzene	< 11.3	μg/kg dry	11.3	6.06	1	"	"	"	"		Х
35-98-8	sec-Butylbenzene	< 5.65	μg/kg dry	5.65	4.55	1	"	"	"	"	"	Х
8-06-6	tert-Butylbenzene	< 5.65	μg/kg dry	5.65	4.45	1	"	"	"			Х
5-15-0	Carbon disulfide	< 11.3	μg/kg dry	11.3	3.97	1	"	"	"	"	"	Х
6-23-5	Carbon tetrachloride	< 5.65	μg/kg dry	5.65	3.56	1	"	"	"	"	"	Х
08-90-7	Chlorobenzene	< 5.65	μg/kg dry	5.65	4.14	1	"	"	"	"	"	Х
′5-00-3	Chloroethane	< 11.3	μg/kg dry	11.3	4.15	1	"	"		"		Х
7-66-3	Chloroform	< 5.65	μg/kg dry	5.65	3.80	1	"	"		"		Х
4-87-3	Chloromethane	< 11.3	μg/kg dry	11.3	4.34	1	"	"	"	"		Х
5-49-8	2-Chlorotoluene	< 5.65	μg/kg dry	5.65	4.50	1	"	"	"	"		Х
06-43-4	4-Chlorotoluene	< 5.65	μg/kg dry	5.65	4.90	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 11.3	μg/kg dry	11.3	4.79	1	· ·	u	II	"	"	Х
24-48-1	Dibromochloromethane	< 5.65	μg/kg dry	5.65	3.74	1	"	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	< 5.65	μg/kg dry	5.65	4.06	1	"	"	"	"	"	Х
4-95-3	Dibromomethane	< 5.65	μg/kg dry	5.65	3.32	1	"	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	< 5.65	μg/kg dry	5.65	5.24	1	"	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	< 5.65	μg/kg dry	5.65	4.53	1	"	"	"	"		Х
06-46-7	1,4-Dichlorobenzene	< 5.65	μg/kg dry	5.65	5.36	1	"	"	"	"	"	Х
5-71-8	Dichlorodifluoromethane (Freon12)	< 11.3	μg/kg dry	11.3	3.03	1	"	"	u	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.65	μg/kg dry	5.65	3.83	1	"	"	"	"	"	Χ
07-06-2	1,2-Dichloroethane	< 5.65	μg/kg dry	5.65	3.81	1	"	н	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.65	μg/kg dry	5.65	3.46	1	п	п	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	< 5.65	μg/kg dry	5.65	3.27	1	n	"	"	"	"	Х
56-60-5	trans-1,2-Dichloroethene	< 5.65	μg/kg dry	5.65	3.51	1	"	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	< 5.65	μg/kg dry	5.65	3.74	1	n	"	"	"	"	Х
42-28-9	1,3-Dichloropropane	< 5.65	μg/kg dry	5.65	4.32	1	"	"	"	"	"	Х

TrenchB_ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil		ection Date 8-Sep-20 09			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>											
							ial weight:						
594-20-7	2,2-Dichloropropane	< 5.65		μg/kg dry	5.65	3.90	1	SW846 8260C LLS	28-Sep-20	29-Sep-20	MED	2001880) X
563-58-6	1,1-Dichloropropene	< 5.65		μg/kg dry	5.65	3.84	1	"	"	•	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.65		μg/kg dry	5.65	3.68	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.65		μg/kg dry	5.65	4.29	1	ıı	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.65		μg/kg dry	5.65	4.03	1		u	"	"	"	X
87-68-3	Hexachlorobutadiene	< 11.3		μg/kg dry	11.3	5.68	1	"	"	"	"	"	X
591-78-6	2-Hexanone (MBK)	< 11.3		μg/kg dry	11.3	3.32	1	u	u	u u	"	"	Х
98-82-8	Isopropylbenzene	< 5.65		μg/kg dry	5.65	4.27	1	"	"	"	"		Х
99-87-6	4-Isopropyltoluene	< 5.65		μg/kg dry	5.65	5.55	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 5.65		μg/kg dry	5.65	3.13	1	ıı	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 11.3		μg/kg dry	11.3	3.65	1	"	n n	"	"	"	Х
75-09-2	Methylene chloride	< 11.3		μg/kg dry	11.3	3.03	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 5.65		μg/kg dry	5.65	5.11	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 5.65		μg/kg dry	5.65	4.78	1	"	"	"	"	"	Х
100-42-5	Styrene	< 5.65		μg/kg dry	5.65	4.37	1	"	"	"	"	"	X
630-20-6	1,1,1,2-Tetrachloroethane	< 5.65		μg/kg dry	5.65	4.24	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.65		μg/kg dry	5.65	5.18	1	"	"	"	"		Х
127-18-4	Tetrachloroethene	< 5.65		μg/kg dry	5.65	3.14	1	u	u	"	"	"	Х
108-88-3	Toluene	< 5.65		μg/kg dry	5.65	3.58	1	"	"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 5.65		μg/kg dry	5.65	4.77	1	"	"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 5.65		μg/kg dry	5.65	5.21	1	"	"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 5.65		μg/kg dry	5.65	5.37	1	"	u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.65		μg/kg dry	5.65	3.85	1	"	u	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 5.65		μg/kg dry	5.65	4.26	1	"	"	"	"		Х
79-01-6	Trichloroethene	< 5.65		μg/kg dry	5.65	3.80	1	"	"	"	"		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.65		μg/kg dry	5.65	4.32	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 5.65		μg/kg dry	5.65	4.97	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 5.65		μg/kg dry	5.65	4.78	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.65		μg/kg dry	5.65	4.80	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 5.65		μg/kg dry	5.65	3.45	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 11.3		μg/kg dry	11.3	7.72	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 5.65		μg/kg dry	5.65	4.12	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 11.3		μg/kg dry	11.3	2.86	1	"	u u	"	"	"	
60-29-7	Ethyl ether	< 5.65		μg/kg dry	5.65	2.97	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 5.65		μg/kg dry	5.65	4.46	1	"	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 5.65		μg/kg dry	5.65	3.72	1	"	"	"	"	"	
108-20-3	Di-isopropyl ether	< 5.65		μg/kg dry	5.65	4.03	1	"	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 113		μg/kg dry	113	30.3	1	"	"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 113		μg/kg dry	113	35.1	1	"	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 28.3		μg/kg dry	28.3	4.17	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 1130		μg/kg dry	1130	70.1	1	"	"	"	"	"	

Sample Id	dentification			Client P	roject#		Matrix	Coll	ection Date	/Time	R.e	ceived	
TrenchB_	_0-6			6013973			Soil		3-Sep-20 09			Sep-20	
SC59391-	-02			0013773	2 2700		3011	10	5-5cp-20 07	.10	21-	3cp-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
Semivolat	tile Organic Compounds												
131-11-3	Dimethyl phthalate	< 336		μg/kg dry	336	37.7	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Х
105-67-9	2,4-Dimethylphenol	< 336		μg/kg dry	336	26.6	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 336		μg/kg dry	336	35.9	1	"	"	"	"	"	X
534-52-1	4,6-Dinitro-2-methylphenol	< 336		μg/kg dry	336	48.1	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 336		μg/kg dry	336	34.8	1	"	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 170		μg/kg dry	170	40.7	1	"	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 170		μg/kg dry	170	34.7	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 336		μg/kg dry	336	50.0	1	"	"	"			Х
206-44-0	Fluoranthene	< 67.9		μg/kg dry	67.9	39.8	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 67.9		μg/kg dry	67.9	43.9	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 170		μg/kg dry	170	42.7	1		"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 170		μg/kg dry	170	42.7	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 170		μg/kg dry	170	42.8	1	"	n .	"	"	"	X
67-72-1	Hexachloroethane	< 170		μg/kg dry	170	38.4	1		"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 67.9		μg/kg dry	67.9	46.4	1		"	"	"	"	Х
78-59-1	Isophorone	< 170		μg/kg dry	170	26.1	1		"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 67.9		μg/kg dry	67.9	47.5	1	"					Х
95-48-7	2-Methylphenol	< 336		μg/kg dry	336	27.0	1			"	"		Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 336		μg/kg dry	336	26.4	1	"	"	"	"	"	X
91-20-3	Naphthalene	< 67.9		μg/kg dry	67.9	39.2	1	"	"	"		"	Х
88-74-4	2-Nitroaniline	< 336		μg/kg dry	336	30.4	1	"		"	"	"	Х
99-09-2	3-Nitroaniline	< 336		μg/kg dry	336	31.0	1		"	"	"	"	Х
100-01-6	4-Nitroaniline	< 170		μg/kg dry	170	44.8	1		"	"	"	"	Х
98-95-3	Nitrobenzene	< 170		μg/kg dry	170	39.3	1		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 170		μg/kg dry	170	29.7	1		"	"			Х
100-02-7	4-Nitrophenol	< 1340		μg/kg dry	1340	44.7	1		"				Х
62-75-9	N-Nitrosodimethylamine	< 170		μg/kg dry	170	22.2	1		"				Х
621-64-7	N-Nitrosodi-n-propylamine	< 170		μg/kg dry	170	29.7	1	"	"	"	"	"	Х
86-30-6	N-Nitrosodiphenylamine	< 336		μg/kg dry	336	34.2	1			"	"		Х
87-86-5	Pentachlorophenol	< 336		μg/kg dry	336	40.0	1		"	"	"	"	Х
85-01-8	Phenanthrene	< 67.9		μg/kg dry	67.9	38.5	1		"				Х
108-95-2	Phenol	< 336		μg/kg dry	336	34.0	1		"				Х
129-00-0	Pyrene	< 67.9		μg/kg dry	67.9	37.4	1		"	"		"	Х
110-86-1	Pyridine	< 336		µg/kg dry	336	79.5	1			,,	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 336		μg/kg dry	336	41.3	1						X
90-12-0	1-Methylnaphthalene	< 67.9		μg/kg dry μg/kg dry	67.9	37.4	1	,,	"				^
95-95-4								,,			"		~
88-06-2	2,4,5-Trichlorophenol	< 336 < 170		µg/kg dry	336 170	34.7	1	"	"		,,	"	X X
	2,4,6-Trichlorophenol			µg/kg dry	170	41.5	1	"			"	"	
82-68-8	Pentachloronitrobenzene	< 336		μg/kg dry	336	35.7	1				"	"	X
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 336		μg/kg dry	336	40.0	1	-	-	-		••	X
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	41			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	66			30-13	0 %		"	"	"	"	"	

Sample Id TrenchB_ SC59391-			<u>Client P</u> 6013973	-		<u>Matrix</u> Soil		ection Date 3-Sep-20 09			ceived Sep-20	
CAS No.	Analyte(s)	Result Flag	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolati	ile Organic Compounds by	y GCMS										
Semivolat	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	57		30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	ı
4165-62-2	Phenol-d5	64		30-13	80 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	70		30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	73		30-13	80 %			"	"	"	"	
Extractab	le Petroleum Hydrocarbor	18										
	nting by GC by method SW846 3546											
	Total Petroleum Hydrocarbons	< 13.8	mg/kg dry	13.8	11.5	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate i	recoveries:											
84-15-1	o-Terphenyl	70		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	81		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Serie by method SW846 3050											
7440-22-4	Silver	< 3.30	mg/kg dry	3.30	0.178	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	X
7440-38-2	Arsenic	20.0	mg/kg dry	1.65	0.209	1	"	"	23-Sep-20	ıı	"	Х
7440-39-3	Barium	24.0	mg/kg dry	1.10	0.130	1	"	"	"	ıı	"	Х
7440-43-9	Cadmium	< 0.550	mg/kg dry	0.550	0.0285	1	"	"	"	"	"	Х
7440-47-3	Chromium	11.1	mg/kg dry	1.10	0.146	1	"	"	"	"	"	Х
7439-97-6	Mercury	< 0.0312	mg/kg dry	0.0312	0.0087	1	SW846 7471B	"	29-Sep-20	edt	2001785	X
Prepared	by method SW846 3050	<u>B</u>										
7439-92-1	Lead	5.13	mg/kg dry	1.65	0.233	1	SW846 6010C	"	28-Sep-20	PMH/ED	Γ2001784	X
7782-49-2	Selenium	< 1.65	mg/kg dry	1.65	0.315	1	"	"	"	"	"	Χ
7704-34-9	Sulfur	107	mg/kg dry	27.5	1.88	1	"	"	23-Sep-20	"	"	
General C	hemistry Parameters											
	% Solids	96.6	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	ı
	by method 7.3.3											
Analysis pe	erformed by Eurofins TestAr	nerica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:37	2337	551420	
Prepared	by method 7.3.4						11					
Analysis pe	erformed by Eurofins TestAr	nerica - Buffalo - 2337										
	Sulfide, Reactive	< 10	mg/kg	10	10	1	SW846 9034_Reactive	"	28-Sep-20 14:06	2337	551421	

29-Sep-20 15:34 Page 23 of 78

TrenchD_ SC59391-	_			Client Pr 6013973			<u>Matrix</u> Soil	·	ection Date 3-Sep-20 10			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Oi	rganic Compounds												
Volatile O	rganic Compounds by SW												
<u>Prepared</u> 78-93-3	by method SW846 5035A 2-Butanone (MEK)	Soil (high level) < 64.8)	μg/kg dry	64.8	<u>Init</u> 14.8	ial weight: 50	27.79 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	×
Surrogate r				1-337									
30110gale 1 460-00-4	4-Bromofluorobenzene	96			70-13	20.0%		n n					
2037-26-5	Toluene-d8	110			70-13 70-13			"		"			
17060-07-0	1,2-Dichloroethane-d4	109			70-13			"		"			
1868-53-7	Dibromofluoromethane	103			70-13				"	"	"		
	rganic Compounds by SW		IS1		70-13	10 %							
	by method SW846 5035A		101			Init	ial weight:	8.62 q					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.10		μg/kg dry	3.10	2.02	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
67-64-1	Acetone	36.3		μg/kg dry	31.0	6.95	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 3.10		μg/kg dry	3.10	1.86	1	"	"	"			Х
71-43-2	Benzene	< 3.10		μg/kg dry	3.10	2.07	1	"	"	"			Х
108-86-1	Bromobenzene	< 3.10		μg/kg dry	3.10	2.07	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 3.10		μg/kg dry	3.10	1.76	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 3.10		μg/kg dry	3.10	2.28	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 3.10		μg/kg dry	3.10	2.37	1		"				Х
74-83-9	Bromomethane	< 6.21		μg/kg dry	6.21	1.01	1		"				Х
104-51-8	n-Butylbenzene	< 6.21		μg/kg dry	6.21	3.33	1	"	"	"			Х
135-98-8	sec-Butylbenzene	< 3.10		μg/kg dry	3.10	2.50	1		"				Х
98-06-6	tert-Butylbenzene	< 3.10		μg/kg dry	3.10	2.45	1		"				Х
75-15-0	Carbon disulfide	< 6.21		μg/kg dry	6.21	2.18	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 3.10		μg/kg dry	3.10	1.96	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 3.10		μg/kg dry	3.10	2.27	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 6.21		μg/kg dry	6.21	2.28	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 3.10		μg/kg dry	3.10	2.09	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 6.21		μg/kg dry	6.21	2.38	1		"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 3.10		μg/kg dry	3.10	2.47	1		"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 3.10		μg/kg dry	3.10	2.69	1		"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 6.21		μg/kg dry	6.21	2.63	1	"	w	W	"	"	Х
124-48-1	Dibromochloromethane	< 3.10		μg/kg dry	3.10	2.06	1	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.10		μg/kg dry	3.10	2.23	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 3.10		μg/kg dry	3.10	1.83	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.88	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.49	1		"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.94	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 6.21		μg/kg dry	6.21	1.66	1	"	"	n	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.10		μg/kg dry	3.10	2.10	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.10		μg/kg dry	3.10	2.09	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.10		μg/kg dry	3.10	1.90	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.10		μg/kg dry	3.10	1.79	1	"	"	n n	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.10		μg/kg dry	3.10	1.93	1	"	"	n n	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.10		μg/kg dry	3.10	2.06	1	n .	"	n n	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.10		μg/kg dry	3.10	2.37	1	"	"	"		"	Х

	03			6013973	roject # 2*2900		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 3-Sep-20 10			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Org	ganic Compounds												
	ganic Compounds by SW	846 8260	IS1										
							ial weight:						
594-20-7	2,2-Dichloropropane	< 3.10		μg/kg dry	3.10	2.14	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
563-58-6	1,1-Dichloropropene	< 3.10		μg/kg dry	3.10	2.11	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 3.10		μg/kg dry	3.10	2.02	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.10		μg/kg dry	3.10	2.36	1	·	"	"	"	"	Х
100-41-4	Ethylbenzene	< 3.10		μg/kg dry	3.10	2.22	1	"	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	< 6.21		μg/kg dry	6.21	3.12	1	"	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	< 6.21		μg/kg dry	6.21	1.83	1	"	"	"	"	"	Χ
98-82-8	Isopropylbenzene	< 3.10		μg/kg dry	3.10	2.35	1	"	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	< 3.10		μg/kg dry	3.10	3.05	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 3.10		μg/kg dry	3.10	1.72	1	"	"	"	"	"	Χ
	4-Methyl-2-pentanone (MIBK)	< 6.21		μg/kg dry	6.21	2.01	1	"	"	n	"	"	Х
75-09-2	Methylene chloride	< 6.21		μg/kg dry	6.21	1.66	1	"	u u	II .	"	"	Χ
91-20-3	Naphthalene	< 3.10		μg/kg dry	3.10	2.81	1	"	u u	II .	"	"	Χ
103-65-1	n-Propylbenzene	< 3.10		μg/kg dry	3.10	2.63	1	"	u u	II .	"	"	Χ
100-42-5	Styrene	< 3.10		μg/kg dry	3.10	2.40	1	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 3.10		μg/kg dry	3.10	2.33	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 3.10		μg/kg dry	3.10	2.84	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 3.10		μg/kg dry	3.10	1.73	1		"	"	"	"	Χ
108-88-3	Toluene	< 3.10		μg/kg dry	3.10	1.97	1		"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.62	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.86	1	"	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.95	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 3.10		μg/kg dry	3.10	2.12	1		"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 3.10		μg/kg dry	3.10	2.34	1		"	"	"	"	Х
79-01-6	Trichloroethene	< 3.10		μg/kg dry	3.10	2.09	1		"	"	"	"	Х
	Trichlorofluoromethane (Freon 11)	< 3.10		μg/kg dry	3.10	2.37	1	n .	"	"	"	u	Х
96-18-4	1,2,3-Trichloropropane	< 3.10		μg/kg dry	3.10	2.73	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 3.10		μg/kg dry	3.10	2.63	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 3.10		μg/kg dry	3.10	2.64	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 3.10		μg/kg dry	3.10	1.89	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 6.21		μg/kg dry	6.21	4.24	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 3.10		μg/kg dry	3.10	2.27	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 6.21		μg/kg dry	6.21	1.57	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 3.10		μg/kg dry	3.10	1.63	1	"	"	n	"	"	Х
994-05-8	Tert-amyl methyl ether	< 3.10		μg/kg dry	3.10	2.45	1	· ·	n	n	"	"	
637-92-3	Ethyl tert-butyl ether	< 3.10		μg/kg dry	3.10	2.04	1	"	u	n n	"	"	
108-20-3	Di-isopropyl ether	< 3.10		μg/kg dry	3.10	2.22	1	· ·	n	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 62.1		μg/kg dry	62.1	16.6	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 62.1		μg/kg dry	62.1	19.3	1	"	"	"	"	"	Х
	trans-1,4-Dichloro-2-buten e	< 15.5		μg/kg dry	15.5	2.29	1	"	"	"	u	"	X
64-17-5	Ethanol	< 621		μg/kg dry	621	38.5	1	"	n n	"	"	"	

TrenchD SC59391				Client Pr 6013973	-		<u>Matrix</u> Soil		ection Date 3-Sep-20 10			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
Volatile O	organic Compounds by SW	846 8260	IS1										
460-00-4	4-Bromofluorobenzene	67	SGCMS VOC		70-13		tial weight:	8.62 g SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	i
2037-26-5	Toluene-d8	92	VOO		70-13	80 %		"	"			"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	80 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	114			70-13	80 %		ıı .	"	"	"	"	
Semivolat	ile Organic Compounds by (GCMS											
	tile Organic Compounds												
Prepared	by method SW846 3546												
83-32-9	Acenaphthene	< 71.0		μg/kg dry	71.0	37.7	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800) X
208-96-8	Acenaphthylene	77.4		μg/kg dry	71.0	37.1	1	"	"	"	"	"	X
62-53-3	Aniline	< 351		μg/kg dry	351	22.4	1	"	"	"	"	"	X
120-12-7	Anthracene	134		μg/kg dry	71.0	40.9	1	"	"	"	"	"	X
103-33-3	Azobenzene/Diphenyldiaz ene	< 351		μg/kg dry	351	38.1	1	"	"	"	u	"	
92-87-5	Benzidine	< 703		μg/kg dry	703	22.4	1	"	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	279		μg/kg dry	71.0	39.9	1	"	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	318		μg/kg dry	71.0	48.6	1	"	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	476		μg/kg dry	71.0	53.5	1	"	"	"	"	"	X
191-24-2	Benzo (g,h,i) perylene	508		μg/kg dry	71.0	50.2	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	188		μg/kg dry	71.0	60.7	1	"	"	"	"	"	Χ
65-85-0	Benzoic acid	< 351		μg/kg dry	351	21.1	1	"	"	"	"	"	X
100-51-6	Benzyl alcohol	< 351		μg/kg dry	351	81.3	1	"	"	"	"	"	X
111-91-1	Bis(2-chloroethoxy)metha ne	< 351		μg/kg dry	351	35.5	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 178		μg/kg dry	178	32.9	1	"	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 178		μg/kg dry	178	28.5	1	"	"	u	"	"	Χ
117-81-7	Bis(2-ethylhexyl)phthalate	< 178		μg/kg dry	178	45.3	1	"	"	"	"	"	Χ
101-55-3	4-Bromophenyl phenyl ether	< 351		μg/kg dry	351	39.7	1	"	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 351		μg/kg dry	351	35.2	1	"	"	"	"	"	Χ
86-74-8	Carbazole	< 178		μg/kg dry	178	40.9	1	"	"	"	"	"	X
59-50-7	4-Chloro-3-methylphenol	< 351		μg/kg dry	351	41.3	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 178		μg/kg dry	178	21.9	1	"	"	"	"	"	Χ
91-58-7	2-Chloronaphthalene	< 351		μg/kg dry	351	48.1	1	"	"	"	"	"	Χ
95-57-8	2-Chlorophenol	< 178		μg/kg dry	178	34.1	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 351		μg/kg dry	351	34.4	1	"	"	"	"	"	Х
218-01-9	Chrysene	310		μg/kg dry	71.0	40.1	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	159		μg/kg dry	71.0	52.5	1	II .	n n	"	"	"	Χ
132-64-9	Dibenzofuran	< 178		μg/kg dry	178	47.8	1	II .	n	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 351		μg/kg dry	351	42.0	1	u	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 351		μg/kg dry	351	37.9	1	II .	n n	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 351		μg/kg dry	351	39.9	1	II .	n	"	"	"	Χ
91-94-1	3,3'-Dichlorobenzidine	< 351		μg/kg dry	351	38.9	1	II .	n	"	"	"	Χ
120-83-2	2,4-Dichlorophenol	< 178		μg/kg dry	178	43.1	1	u	"	"	"	"	Χ
84-66-2	Diethyl phthalate	< 351		μg/kg dry	351	36.8	1	"	"	"	"	"	Χ

-	dentification			Client P	roiect#		Matrix	Colle	ection Date	/Time	Re	ceived	
TrenchD				6013973			Soil		3-Sep-20 10			Sep-20	
SC59391	-03								1			1	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	ile Organic Compounds by (GCMS											
Semivola	tile Organic Compounds												
131-11-3	Dimethyl phthalate	< 351		μg/kg dry	351	39.5	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	X
105-67-9	2,4-Dimethylphenol	< 351		μg/kg dry	351	27.8	1	"	"	"	"		Х
84-74-2	Di-n-butyl phthalate	< 351		μg/kg dry	351	37.6	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 351		μg/kg dry	351	50.4	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 351		μg/kg dry	351	36.4	1		"	"	"		Х
121-14-2	2,4-Dinitrotoluene	< 178		μg/kg dry	178	42.6	1		"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 178		μg/kg dry	178	36.3	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 351		μg/kg dry	351	52.3	1	"	"	"	"		Х
206-44-0	Fluoranthene	107		μg/kg dry	71.0	41.6	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 71.0		μg/kg dry	71.0	45.9	1	"	"	"	"		Х
118-74-1	Hexachlorobenzene	< 178		μg/kg dry	178	44.7	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 178		μg/kg dry	178	44.7	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 178		μg/kg dry	178	44.8	1	"	"	W	"	"	Х
67-72-1	Hexachloroethane	< 178		μg/kg dry	178	40.1	1	"	"	"	"		Х
193-39-5	Indeno (1,2,3-cd) pyrene	395		μg/kg dry	71.0	48.6	1	"	"	"	"	"	Х
78-59-1	Isophorone	< 178		μg/kg dry	178	27.4	1	"	"	"	"	"	Х
1-57-6	2-Methylnaphthalene	96.2		μg/kg dry	71.0	49.7	1	"	"	"	"	"	Х
95-48-7	2-Methylphenol	< 351		μg/kg dry	351	28.2	1		"	"	"		Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 351		μg/kg dry	351	27.6	1	"	"	"	"	"	X
91-20-3	Naphthalene	120		μg/kg dry	71.0	41.0	1	"	"	"	"		Х
88-74-4	2-Nitroaniline	< 351		μg/kg dry	351	31.8	1	"	"	"	"		Х
99-09-2	3-Nitroaniline	< 351		μg/kg dry	351	32.5	1		"	"	"		Х
100-01-6	4-Nitroaniline	< 178		μg/kg dry	178	46.8	1	"	"	"	"	"	Х
98-95-3	Nitrobenzene	< 178		μg/kg dry	178	41.1	1	"	"	"	"		Х
88-75-5	2-Nitrophenol	< 178		μg/kg dry	178	31.1	1		"	"	"		Х
100-02-7	4-Nitrophenol	< 1410		μg/kg dry	1410	46.7	1	"	"	"	"		Х
62-75-9	N-Nitrosodimethylamine	< 178		μg/kg dry	178	23.2	1	"	"	"	"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 178		μg/kg dry	178	31.1	1	"	"	"	"	"	Х
36-30-6	N-Nitrosodiphenylamine	< 351		μg/kg dry	351	35.8	1	"	"	"	"		Х
37-86-5	Pentachlorophenol	< 351		μg/kg dry	351	41.8	1	"	"	"	"		Х
85-01-8	Phenanthrene	303		μg/kg dry	71.0	40.2	1	"	"	"	"		Х
08-95-2	Phenol	< 351		μg/kg dry	351	35.6	1	"	"	"	"	"	Х
129-00-0	Pyrene	109		μg/kg dry	71.0	39.2	1		"	"	"		Х
110-86-1	Pyridine	< 351		μg/kg dry	351	83.2	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 351		μg/kg dry	351	43.2	1	"	"	"	"		Х
0-12-0	1-Methylnaphthalene	< 71.0		μg/kg dry	71.0	39.2	1	"	"			"	
5-95-4	2,4,5-Trichlorophenol	< 351		μg/kg dry	351	36.3	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 178		μg/kg dry	178	43.4	1				"	"	X
32-68-8	Pentachloronitrobenzene	< 351		μg/kg dry	351	37.4	1	"	"	"	"	"	X
95-94-3	1,2,4,5-Tetrachlorobenzen	< 351		μg/kg dry	351	41.8	1	"	"	"	"	"	X
	e			ויש פיייטיז			•						
-	recoveries:												
321-60-8	2-Fluorobiphenyl	52			30-13			"	"	"	"	"	
367-12-4	2-Fluorophenol	77			30-13	0 %		"	"	"	"	"	

Sample Id TrenchD	dentification _0-6			Client P			Matrix		ection Date			ceived	
SC59391	-03			6013973	2*2900		Soil	18	-Sep-20 10):09	21-	Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds b	y GCMS											
Semivola	tile Organic Compounds												
4165-60-0	Nitrobenzene-d5	73			30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	85			30-13	80 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	73			30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	68			30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbo	ns											
	nting by GC by method SW846 3546	6											
	Total Petroleum Hydrocarbons	39.4		mg/kg dry	13.4	11.2	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:												
84-15-1	o-Terphenyl	73			40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	85			40-14	10 %		"	"	"	"	"	
Total Meta	als by EPA 6000/7000 Seri	es Methods											
<u>Prepared</u>	by method SW846 3050	<u>)B</u>											
7440-22-4	Silver	< 3.08		mg/kg dry	3.08	0.167	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Χ
7440-38-2	Arsenic	6.56		mg/kg dry	1.54	0.195	1	"	"	23-Sep-20	"	"	Χ
7440-39-3	Barium	57.2		mg/kg dry	1.03	0.121	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.514		mg/kg dry	0.514	0.0266	1	"	"	"	"	"	Χ
7440-47-3	Chromium	12.3		mg/kg dry	1.03	0.137	1	"	"	"	"	"	Χ
7439-97-6	Mercury	0.0974		mg/kg dry	0.0296	0.0082	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
	by method SW846 3050												
7439-92-1	Lead	43.9		mg/kg dry	1.54	0.218	1	SW846 6010C	"	28-Sep-20	PMH/ED	12001784	
7782-49-2	Selenium	< 1.54		mg/kg dry	1.54	0.294	1	"	"		"	•	Х
7704-34-9	Sulfur	174		mg/kg dry	25.7	1.76	1	"	"	23-Sep-20	"	"	
General C	Chemistry Parameters												
	% Solids	93.4		%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	by method 7.3.3												
Analysis p	erformed by Eurofins TestA	merica - Buffalo - 23	37										
	Cyanide, Reactive	< 10		mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:40	2337	551420	
Prepared	by method 7.3.4							N					
	erformed by Eurofins TestA	merica - Buffalo - 23	137										

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 28 of 78

mg/kg

10

10

1

Sulfide, Reactive

< 10

-	lentification			Client Pr	oject #		Matrix	Coll	ection Date	/Time	Re	ceived	
TrenchC_ SC59391-				6013973	2*2900		Soil	18	8-Sep-20 09	:42	21-	Sep-20	
	-04												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	rganic Compounds by SW					1		07.40					
78-93-3	by method SW846 5035A 2-Butanone (MEK)	< 65.7 C)	μg/kg dry	65.7	<u>Inii</u> 15.0	ial weight: 50	27.16 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	X
Curronata	· · · · · · · · · · · · · · · · · · ·												
Surrogate r 460-00-4	4-Bromofluorobenzene	97			70-13	0.0/		"					
2037-26-5	Toluene-d8	97 110			70-13 70-13			"					
17060-07-0	1,2-Dichloroethane-d4	112			70-13 70-13			"	"				
1868-53-7	Dibromofluoromethane	104			70-13			"	"				
	rganic Compounds by SW		IS1		70-13	U 70							
	by method SW846 5035A		101			Init	ial weight:	7.24 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.69		μg/kg dry	3.69	2.40	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 36.9		μg/kg dry	36.9	8.26	1	"	"	"			Х
107-13-1	Acrylonitrile	< 3.69		μg/kg dry	3.69	2.21	1	"	"	"	"		Х
71-43-2	Benzene	< 3.69		μg/kg dry	3.69	2.46	1	"	"	"	"		Х
108-86-1	Bromobenzene	< 3.69		μg/kg dry	3.69	2.45	1	"	"	"			Х
74-97-5	Bromochloromethane	< 3.69		μg/kg dry	3.69	2.09	1	"	"	"			Х
75-27-4	Bromodichloromethane	< 3.69		μg/kg dry	3.69	2.71	1	"	"	"			Х
75-25-2	Bromoform	< 3.69		μg/kg dry	3.69	2.82	1	"	"	"	"		Х
74-83-9	Bromomethane	< 7.37		μg/kg dry	7.37	1.20	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 7.37		μg/kg dry	7.37	3.95	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 3.69		μg/kg dry	3.69	2.97	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 3.69		μg/kg dry	3.69	2.90	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 7.37		μg/kg dry	7.37	2.59	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 3.69		μg/kg dry	3.69	2.32	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 3.69		μg/kg dry	3.69	2.70	1	"	"	"			Х
75-00-3	Chloroethane	< 7.37		μg/kg dry	7.37	2.71	1	"	"	"			Х
67-66-3	Chloroform	< 3.69		μg/kg dry	3.69	2.48	1	"	"	"	"		Х
74-87-3	Chloromethane	< 7.37		μg/kg dry	7.37	2.83	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 3.69		μg/kg dry	3.69	2.93	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 3.69		μg/kg dry	3.69	3.20	1	"	"	u	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 7.37		μg/kg dry	7.37	3.13	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 3.69		μg/kg dry	3.69	2.44	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.69		μg/kg dry	3.69	2.65	1	"	"	u	"	"	Х
74-95-3	Dibromomethane	< 3.69		μg/kg dry	3.69	2.17	1	"	"	u	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.69		μg/kg dry	3.69	3.42	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.69		μg/kg dry	3.69	2.96	1	"	"	u	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.69		μg/kg dry	3.69	3.49	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.37		μg/kg dry	7.37	1.98	1	"	n .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.69		μg/kg dry	3.69	2.50	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.69		μg/kg dry	3.69	2.48	1	II .	n	u.	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.69		μg/kg dry	3.69	2.26	1	II .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.69		μg/kg dry	3.69	2.13	1	II .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.69		μg/kg dry	3.69	2.29	1	II .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.69		μg/kg dry	3.69	2.44	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.69		μg/kg dry	3.69	2.82	1	"					Х

Sample Id TrenchC_ SC59391-				Client P			<u>Matrix</u> Soil		ection Date 3-Sep-20 09			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>	IS1										
							ial weight:						
594-20-7	2,2-Dichloropropane	< 3.69		μg/kg dry	3.69	2.54	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	i X
563-58-6	1,1-Dichloropropene	< 3.69		μg/kg dry	3.69	2.51	1	•	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 3.69		μg/kg dry	3.69	2.40	1	•	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.69		μg/kg dry	3.69	2.80	1	"	"	"	"	"	Χ
100-41-4	Ethylbenzene	< 3.69		μg/kg dry	3.69	2.63	1	"	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	< 7.37		μg/kg dry	7.37	3.71	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 7.37		μg/kg dry	7.37	2.17	1	"	u	"	"	"	Х
98-82-8	Isopropylbenzene	< 3.69		μg/kg dry	3.69	2.79	1	"	u	"	"	"	Х
99-87-6	4-Isopropyltoluene	< 3.69		μg/kg dry	3.69	3.62	1	"	u	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 3.69		μg/kg dry	3.69	2.04	1	"	"	"	"		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 7.37		μg/kg dry	7.37	2.38	1	"	u	"	"	ıı	Х
75-09-2	Methylene chloride	< 7.37		μg/kg dry	7.37	1.98	1	"	u	"	"	"	Χ
91-20-3	Naphthalene	< 3.69		μg/kg dry	3.69	3.33	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 3.69		μg/kg dry	3.69	3.12	1	"	"	"	"	"	Х
100-42-5	Styrene	< 3.69		μg/kg dry	3.69	2.85	1	"	"	"	"		Х
630-20-6	1,1,1,2-Tetrachloroethane	< 3.69		μg/kg dry	3.69	2.76	1	"	u u	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 3.69		μg/kg dry	3.69	3.38	1	"	u u	"	"	"	Х
127-18-4	Tetrachloroethene	< 3.69		μg/kg dry	3.69	2.05	1		"	"	"		Х
108-88-3	Toluene	< 3.69		μg/kg dry	3.69	2.34	1		"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.11	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.40	1		"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.50	1	"	"	"	"		
71-55-6	1,1,1-Trichloroethane	< 3.69		μg/kg dry	3.69	2.51	1	"	"	"	"		Х
79-00-5	1,1,2-Trichloroethane	< 3.69		μg/kg dry	3.69	2.78	1	"	"	"	"		Х
79-01-6	Trichloroethene	< 3.69		μg/kg dry	3.69	2.48	1	"	"	"	"		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 3.69		μg/kg dry	3.69	2.82	1	"	u	"	"	ıı	Х
96-18-4	1,2,3-Trichloropropane	< 3.69		μg/kg dry	3.69	3.24	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 3.69		μg/kg dry	3.69	3.12	1		"	"	"		Х
108-67-8	1,3,5-Trimethylbenzene	< 3.69		μg/kg dry	3.69	3.13	1	"	"	"	"		Х
75-01-4	Vinyl chloride	< 3.69		μg/kg dry	3.69	2.25	1	"	"		"		Х
179601-23-1	•	< 7.37		μg/kg dry	7.37	5.03	1	"	u	"	"		Х
95-47-6	o-Xylene	< 3.69		μg/kg dry	3.69	2.69	1	"	u	"	"		Х
109-99-9	Tetrahydrofuran	< 7.37		μg/kg dry	7.37	1.86	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 3.69		μg/kg dry	3.69	1.94	1	"		"	"		Х
994-05-8	Tert-amyl methyl ether	< 3.69		μg/kg dry	3.69	2.91	1				"		^
637-92-3	Ethyl tert-butyl ether	< 3.69		μg/kg dry μg/kg dry	3.69	2.43	1	"			"	"	
108-20-3	Di-isopropyl ether	< 3.69		μg/kg dry μg/kg dry	3.69	2.43	1	"			"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 73.7		μg/kg dry μg/kg dry	73.7	19.8	1	"	"	"			Х
123-91-1	1,4-Dioxane	< 73.7 < 73.7				22.9	1	"	"	"			X
110-57-6	trans-1,4-Dichloro-2-buten	< 18.4		μg/kg dry μg/kg dry	73.7 18.4	2.72	1	"	п	"	"	"	X
64-17-5	e Ethanol	< 737		μg/kg dry	737	45.7	1	"	"	"		"	
				100 4.1			· ·						

TrenchC ₂ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil		ection Date 3-Sep-20 09		<u>Re</u> 21-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GCMS											
Semivola	tile Organic Compounds		R01										
131-11-3	Dimethyl phthalate	< 1760		μg/kg dry	1760	198	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Χ
105-67-9	2,4-Dimethylphenol	< 1760		μg/kg dry	1760	139	1	"	II .	"	"	"	X
84-74-2	Di-n-butyl phthalate	< 1760		μg/kg dry	1760	188	1	"	n n	"	"	"	X
534-52-1	4,6-Dinitro-2-methylphenol	< 1760		μg/kg dry	1760	252	1	"	n n	"	"	"	X
51-28-5	2,4-Dinitrophenol	< 1760		μg/kg dry	1760	182	1	"	n n	"	"	"	X
121-14-2	2,4-Dinitrotoluene	< 890		μg/kg dry	890	213	1	"	n n	"	"	"	X
606-20-2	2,6-Dinitrotoluene	< 890		μg/kg dry	890	182	1	"	"	"	"	"	X
117-84-0	Di-n-octyl phthalate	< 1760		μg/kg dry	1760	262	1	"	"	"	"	"	X
206-44-0	Fluoranthene	6,580		μg/kg dry	355	208	1	"	"	"	"	"	X
86-73-7	Fluorene	< 355		μg/kg dry	355	230	1	"	"	"	"	"	X
118-74-1	Hexachlorobenzene	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Χ
67-72-1	Hexachloroethane	< 890		μg/kg dry	890	201	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	7,620		μg/kg dry	355	243	1	"	"	"	"	"	X
78-59-1	Isophorone	< 890		μg/kg dry	890	137	1	"	"	"	"	"	X
91-57-6	2-Methylnaphthalene	< 355		μg/kg dry	355	249	1	"	II .	"	"	"	Х
95-48-7	2-Methylphenol	< 1760		μg/kg dry	1760	141	1	"	"	"	"	"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	< 1760		μg/kg dry	1760	138	1	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 355		μg/kg dry	355	205	1	"	"	"	"	"	X
88-74-4	2-Nitroaniline	< 1760		μg/kg dry	1760	159	1	"	"	"	"	"	X
99-09-2	3-Nitroaniline	< 1760		μg/kg dry	1760	163	1	"	"	"	"	"	X
100-01-6	4-Nitroaniline	< 890		μg/kg dry	890	234	1	"	"	"	"	"	X
98-95-3	Nitrobenzene	< 890		μg/kg dry	890	206	1	"	"	"	"	"	X
88-75-5	2-Nitrophenol	< 890		μg/kg dry	890	156	1	"	"	"	"	"	X
100-02-7	4-Nitrophenol	< 7030		μg/kg dry	7030	234	1	"	"	"	"	"	X
62-75-9	N-Nitrosodimethylamine	< 890		μg/kg dry	890	116	1	"	"	"	"	"	X
621-64-7	N-Nitrosodi-n-propylamine	< 890		μg/kg dry	890	156	1	"	"	"	"	"	X
86-30-6	N-Nitrosodiphenylamine	< 1760		μg/kg dry	1760	179	1	"	"	"	"	"	Χ
87-86-5	Pentachlorophenol	< 1760		μg/kg dry	1760	209	1	"	"	"	"	"	X
85-01-8	Phenanthrene	1,720		μg/kg dry	355	201	1	"	"	"	"	"	X
108-95-2	Phenol	< 1760		μg/kg dry	1760	178	1	"	"	"	"	"	X
129-00-0	Pyrene	6,930		μg/kg dry	355	196	1	"	"	"	"	"	X
110-86-1	Pyridine	< 1760		μg/kg dry	1760	416	1	II .	n n	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1760		μg/kg dry	1760	216	1	"	n	"	"	"	Χ
90-12-0	1-Methylnaphthalene	< 355		μg/kg dry	355	196	1	"	n	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 1760		μg/kg dry	1760	182	1	H .	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	< 890		μg/kg dry	890	217	1	п	u u	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	< 1760		μg/kg dry	1760	187	1	H .	"	"	"	"	Χ
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1760		μg/kg dry	1760	209	1	u	"	"	"	"	Χ
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	52			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	89			30-13	0 %		"	"	"		"	

TrenchC_ SC59391-				60139732*2900			<u>Matrix</u> Soil	· 				Received 21-Sep-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer	
Semivolati	le Organic Compounds by	GCMS												
Semivolat	ile Organic Compounds		R01											
4165-60-0	Nitrobenzene-d5	89			30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800)	
4165-62-2	Phenol-d5	89			30-13	80 %		"	"	"	"	"		
1718-51-0	Terphenyl-dl4	78			30-13	80 %		"	"	"	"	"		
118-79-6	2,4,6-Tribromophenol	73			30-13	80 %		"	"	"	"	"		
Extractabl	le Petroleum Hydrocarbon	s												
	nting by GC by method SW846 3546		R01											
	Total Petroleum Hydrocarbons	1,220		mg/kg dry	27.3	22.8	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	}	
Surrogate i	recoveries:													
84-15-1	o-Terphenyl	80			40-14	10 %		"	"	"		"		
3386-33-2	1-Chlorooctadecane	219	S02		40-14	10 %				"		"		
	als by EPA 6000/7000 Serie by method SW846 3050E													
7440-22-4	Silver	< 3.45		mg/kg dry	3.45	0.186	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	X	
7440-38-2	Arsenic	11.1		mg/kg dry	1.72	0.218	1	"	"	23-Sep-20	"	"	Х	
7440-39-3	Barium	38.4		mg/kg dry	1.15	0.136	1	"	"	"	"	"	Х	
7440-43-9	Cadmium	< 0.575		mg/kg dry	0.575	0.0298	1	"	"	"	"	"	X	
7440-47-3	Chromium	10.1		mg/kg dry	1.15	0.153	1	"	"	"	"	"	Х	
7439-97-6	Mercury	0.0870		mg/kg dry	0.0306	0.0085	1	SW846 7471B	"	29-Sep-20	edt	2001785	5 X	
	by method SW846 3050E	_												
7439-92-1	Lead	44.2		mg/kg dry	1.72	0.244	1	SW846 6010C	"	28-Sep-20		Г2001784		
7782-49-2	Selenium	< 1.72		mg/kg dry	1.72	0.329	1	"	"	"	"	"	X	
7704-34-9	Sulfur	318		mg/kg dry	28.7	1.97	1	"	"	23-Sep-20	"	"		
General C	hemistry Parameters													
	% Solids	93.7		%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	1	
	cted Analyses by method 7.3.3													
Analysis pe	erformed by Eurofins TestAm	ierica - Buffalo	- 2337											
	Cyanide, Reactive	< 10		mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:42	2337	551420		
								N						

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 33 of 78

mg/kg

10

10

1

Sulfide, Reactive

< 10

HDDB_5- SC59391-				Client Pr 6013973			<u>Matrix</u> Soil		ection Date 3-Sep-20 11		Received 21-Sep-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared 78-93-3	by method SW846 5035A			uallea das	68.3	<u>Init</u> 15.6	tial weight: 50		22 Can 20	02 Can 20	DDP	2004942	v
	2-Butanone (MEK)	< 00.3 L)	μg/kg dry	00.3	15.6	50	SW846 8260C	23-Sep-20	23-Sep-20	סטפ	2001812	
Surrogate i													
460-00-4	4-Bromofluorobenzene	97			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	110			70-13			"				"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13			"	"	"			
1868-53-7	Dibromofluoromethane	104			70-13	30 %		"	"	"	"	"	
	rganic Compounds by SW by method SW846 5035A		IS1			Init	tial weight:	9.45 g					
76-13-1	1,1,2-Trichlorotrifluoroetha	< 2.97		μg/kg dry	2.97	1.94	1	SW846 8260C	28-Sep-20	28-Sep-20	DDP	2001826	Х
	ne (Freon 113)							LLS					
67-64-1	Acetone	< 29.7		μg/kg dry	29.7	6.66	1	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 2.97		μg/kg dry	2.97	1.78	1	"	"	"	"	"	X
71-43-2	Benzene	< 2.97		μg/kg dry	2.97	1.99	1	"	"	II .	"	"	Х
108-86-1	Bromobenzene	< 2.97		μg/kg dry	2.97	1.98	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 2.97		μg/kg dry	2.97	1.69	1	"	"	II .	"	"	Χ
75-27-4	Bromodichloromethane	< 2.97		μg/kg dry	2.97	2.18	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 2.97		μg/kg dry	2.97	2.27	1	"	"	"	"	"	X
74-83-9	Bromomethane	< 5.95		μg/kg dry	5.95	0.97	1	"	"	"	"	"	X
104-51-8	n-Butylbenzene	< 5.95		μg/kg dry	5.95	3.19	1	"	"	"	"	"	X
135-98-8	sec-Butylbenzene	< 2.97		μg/kg dry	2.97	2.40	1	"	II .	II .	"	"	Х
98-06-6	tert-Butylbenzene	< 2.97		μg/kg dry	2.97	2.34	1	"	"	"	"	"	X
75-15-0	Carbon disulfide	< 5.95		μg/kg dry	5.95	2.09	1	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 2.97		μg/kg dry	2.97	1.87	1	"	n n	"	"	"	X
108-90-7	Chlorobenzene	< 2.97		μg/kg dry	2.97	2.18	1	"	"	"	"		Χ
75-00-3	Chloroethane	< 5.95		μg/kg dry	5.95	2.18	1	"	"	"	"		Х
67-66-3	Chloroform	< 2.97		μg/kg dry	2.97	2.00	1	"	"	"	"		Х
74-87-3	Chloromethane	< 5.95		μg/kg dry	5.95	2.28	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 2.97		μg/kg dry	2.97	2.37	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 2.97		μg/kg dry	2.97	2.58	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 5.95		μg/kg dry	5.95	2.52	1	"	"	W	"	"	Х
124-48-1	Dibromochloromethane	< 2.97		μg/kg dry	2.97	1.97	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 2.97		μg/kg dry	2.97	2.14	1	"	"	"	"	"	X
74-95-3	Dibromomethane	< 2.97		μg/kg dry	2.97	1.75	1	n	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.76	1	n	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.38	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.82	1	u u	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 5.95		μg/kg dry	5.95	1.59	1	"	II	H	"	"	Х
75-34-3	1,1-Dichloroethane	< 2.97		μg/kg dry	2.97	2.02	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 2.97		μg/kg dry	2.97	2.00	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 2.97		μg/kg dry	2.97	1.82	1	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 2.97		μg/kg dry	2.97	1.72	1	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 2.97		μg/kg dry	2.97	1.85	1	m .	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 2.97		μg/kg dry	2.97	1.97	1	II .	u	"	"	"	Χ
142-28-9	1,3-Dichloropropane	< 2.97		μg/kg dry	2.97	2.27	1	"	"	"		"	Х

Ethanol

< 595

64-17-5

36.9

1

595

μg/kg dry

38.5

1

367

µg/kg dry

Diethyl phthalate

< 367

84-66-2

Х

Client Project # 60139732*2900

Matrix Soil Collection Date/Time 18-Sep-20 11:10 Received 21-Sep-20

SC59391	-05							, sep 20 11			5 c p 20	
CAS No.	Analyte(s)	Result	Flag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by (GCMS										
Semivola	tile Organic Compounds											
131-11-3	Dimethyl phthalate	< 367	μg/kg dry	367	41.3	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Χ
105-67-9	2,4-Dimethylphenol	< 367	μg/kg dry	367	29.0	1		"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 367	μg/kg dry	367	39.3	1	"	u u	u	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	< 367	μg/kg dry	367	52.6	1	"	"	u	"	"	Χ
51-28-5	2,4-Dinitrophenol	< 367	μg/kg dry	367	38.1	1	"	u u	u	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 186	μg/kg dry	186	44.5	1		"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 186	μg/kg dry	186	37.9	1	"	"	u u	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 367	μg/kg dry	367	54.6	1	"	"	u u	"	"	Χ
206-44-0	Fluoranthene	< 74.2	μg/kg dry	74.2	43.5	1	"	"	"	"	"	Χ
86-73-7	Fluorene	< 74.2	μg/kg dry	74.2	48.0	1	"	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	< 186	μg/kg dry	186	46.7	1	"	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	< 186	μg/kg dry	186	46.7	1	"	"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadien	< 186	μg/kg dry	186	46.9	1	"	"	"	"	"	Χ
07 70 4	e	. 100		400	40.0	4						V
67-72-1	Hexachloroethane	< 186	μg/kg dry 	186	42.0	1					"	X
193-39-5	Indeno (1,2,3-cd) pyrene	151	μg/kg dry 	74.2	50.7	1						X
78-59-1	Isophorone	< 186	μg/kg dry 	186	28.6	1						X
91-57-6	2-Methylnaphthalene	< 74.2	μg/kg dry 	74.2	52.0	1						X
95-48-7	2-Methylphenol	< 367	μg/kg dry	367	29.5	1					"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	< 367	μg/kg dry	367	28.8	1	"	"	"	"		Х
91-20-3	Naphthalene	< 74.2	μg/kg dry	74.2	42.8	1	"	"	"	"		Χ
88-74-4	2-Nitroaniline	< 367	μg/kg dry	367	33.3	1	"	"	"	"		Χ
99-09-2	3-Nitroaniline	< 367	μg/kg dry	367	33.9	1	"	"	"	"		Χ
100-01-6	4-Nitroaniline	< 186	μg/kg dry	186	49.0	1	"	"	"	"		Χ
98-95-3	Nitrobenzene	< 186	μg/kg dry	186	43.0	1	"	"	"	"		Χ
88-75-5	2-Nitrophenol	< 186	μg/kg dry	186	32.5	1	"	"	"	"		Χ
100-02-7	4-Nitrophenol	< 1470	μg/kg dry	1470	48.9	1	"	u u	u	"	"	Χ
62-75-9	N-Nitrosodimethylamine	< 186	μg/kg dry	186	24.3	1	"	u u	u	"	"	Χ
621-64-7	N-Nitrosodi-n-propylamine	< 186	μg/kg dry	186	32.5	1	"	"	"	"		Χ
86-30-6	N-Nitrosodiphenylamine	< 367	μg/kg dry	367	37.4	1	"	u u	u	"	"	Χ
87-86-5	Pentachlorophenol	< 367	μg/kg dry	367	43.7	1	"	u u	u	"	"	Χ
85-01-8	Phenanthrene	< 74.2	μg/kg dry	74.2	42.1	1	"	u u	u	"	"	Χ
108-95-2	Phenol	< 367	μg/kg dry	367	37.2	1		"	"	"		Χ
129-00-0	Pyrene	< 74.2	μg/kg dry	74.2	41.0	1		"	"	"		Χ
110-86-1	Pyridine	< 367	μg/kg dry	367	86.9	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 367	μg/kg dry	367	45.2	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 74.2	μg/kg dry	74.2	41.0	1	п	"	u	"	"	
95-95-4	2,4,5-Trichlorophenol	< 367	μg/kg dry	367	37.9	1	"	"			"	Х
88-06-2	2,4,6-Trichlorophenol	< 186	μg/kg dry	186	45.4	1	"	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	< 367	μg/kg dry	367	39.1	1	"	"	"	"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 367	μg/kg dry	367	43.7	1	"	"	"	"	"	X
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	52		30-13	80 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	86		30-13	80 %			"	"	"	"	

Sample Io HDDB_5 SC59391-			<u>Client P</u> 6013973			<u>Matrix</u> Soil	<u></u>	ection Date -Sep-20 11		Received 21-Sep-20		
CAS No.	-03 Analyte(s)	Result Fla	ig Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Ratch	Cert.
	• ,,		·s		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	Tremon reg.	110puncu	111111111111111111111111111111111111111	1211111950	2	
	ile Organic Compounds by C	GCMS										
	tile Organic Compounds	7-5		20.40			0141040.00700			5	0004000	
4165-60-0	Nitrobenzene-d5	75		30-13			SW846 8270D	22-Sep-20	22-Sep-20	BJJ "	2001800	
4165-62-2	Phenol-d5	90		30-13			"	"	"		•	
1718-51-0	Terphenyl-dl4	71		30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	66		30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbons											
	nting by GC by method SW846 3546											
	Total Petroleum Hydrocarbons	39.9	mg/kg dry	14.7	12.3	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	80		40-14	10 %		"	"	"		"	
3386-33-2	1-Chlorooctadecane	94		40-14	10 %		n	"	"			
	als by EPA 6000/7000 Series by method SW846 3050B	Methods										
7440-22-4	Silver	< 3.58	mg/kg dry	3.58	0.193	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	7.62	mg/kg dry	1.79	0.227	1		,	23-Sep-20		"	Х
7440-39-3	Barium	25.5	mg/kg dry	1.19	0.141	1	"	"	,		"	Х
7440-43-9	Cadmium	< 0.597	mg/kg dry	0.597	0.0309	1	"	"	"			Х
7440-47-3	Chromium	8.84	mg/kg dry	1.19	0.159	1			"			X
7439-97-6	Mercury	< 0.0367	mg/kg dry	0.0367	0.0102	1	SW846 7471B	"	29-Sep-20	edt	2001785	
	by method SW846 3050B	· 0.0301	mg/kg dry	0.0007	0.0102	'	OW040 747 1B		29-0cp-20	cut	2001703	^
7439-92-1	Lead	5.21	mg/kg dry	1.79	0.253	1	SW846 6010C	"	28-Sep-20	PMH/ED1	2001784	Х
7782-49-2	Selenium	< 1.79	mg/kg dry	1.79	0.341	1			,			Х
7704-34-9	Sulfur	60.9	mg/kg dry	29.8	2.04	1		"	23-Sep-20		"	
Conoral C	Chemistry Parameters											
General	% Solids	89.0	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	acted Analyses by method 7.3.3											
Analysis pe	erformed by Eurofins TestAme.	rica - Buffalo - 2337										
, 1	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:43	2337	551420	

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 38 of 78

mg/kg

10

10

1

Prepared by method 7.3.4

Sulfide, Reactive

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

HDDA_5- SC59391-				Client Pt 6013973	_		<u>Matrix</u> Soil		ection Date 3-Sep-20 10		Received 21-Sep-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5035A				05.4		ial weight:		00.000	00.000	DDD	0004040	
78-93-3 ————	2-Butanone (MEK)	< 65.1)	μg/kg dry	65.1	14.9	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	X
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	112			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	112			70-13			"	"	"	"	"	
1868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	"	"	"	
	rganic Compounds by SW		IS1			lo it	ial waight:	0.40 ~					
<u>Prepared</u> 76-13-1	by method SW846 5035A 1.1.2-Trichlorotrifluoroetha	*		ug/kg dny	2 16		ial weight:		28-Sep-20	20 San 20	DDD	2001926	
70-13-1	ne (Freon 113)	< 3.16		μg/kg dry	3.16	2.06	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
67-64-1	Acetone	< 31.6		μg/kg dry	31.6	7.07	1	"	"	"	"		Х
107-13-1	Acrylonitrile	< 3.16		μg/kg dry	3.16	1.89	1	"	"	"	"		Х
71-43-2	Benzene	< 3.16		μg/kg dry	3.16	2.11	1	"	"	"	"		Х
108-86-1	Bromobenzene	< 3.16		μg/kg dry	3.16	2.10	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 3.16		μg/kg dry	3.16	1.79	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 3.16		μg/kg dry	3.16	2.32	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 3.16		μg/kg dry	3.16	2.41	1	"	"		"		Х
74-83-9	Bromomethane	< 6.31		μg/kg dry	6.31	1.03	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 6.31		μg/kg dry	6.31	3.38	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 3.16		μg/kg dry	3.16	2.54	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 3.16		μg/kg dry	3.16	2.49	1	"	"		"		Х
75-15-0	Carbon disulfide	< 6.31		μg/kg dry	6.31	2.21	1	"	"		"		Х
56-23-5	Carbon tetrachloride	< 3.16		μg/kg dry	3.16	1.99	1	"	"		"		Х
108-90-7	Chlorobenzene	< 3.16		μg/kg dry	3.16	2.31	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 6.31		μg/kg dry	6.31	2.32	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 3.16		μg/kg dry	3.16	2.12	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 6.31		μg/kg dry	6.31	2.42	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 3.16		μg/kg dry	3.16	2.51	1	"		"			Х
106-43-4	4-Chlorotoluene	< 3.16		μg/kg dry	3.16	2.74	1	"		"			Х
96-12-8	1,2-Dibromo-3-chloroprop	< 6.31		μg/kg dry	6.31	2.68	1	"	"	"	"	n	Х
124-48-1	Dibromochloromethane	< 3.16		μg/kg dry	3.16	2.09	1	"	II .	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.16		μg/kg dry	3.16	2.27	1	"	"	"	"	"	X
74-95-3	Dibromomethane	< 3.16		μg/kg dry	3.16	1.86	1	n .	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.93	1	"	"	"		"	Х
541-73-1	1,3-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.53	1	"	"	"		"	Х
106-46-7	1,4-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.99	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 6.31		μg/kg dry	6.31	1.69	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.16		μg/kg dry	3.16	2.14	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 3.16		μg/kg dry	3.16	2.13	1	u u	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 3.16		μg/kg dry	3.16	1.93	1	II .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.16		μg/kg dry	3.16	1.82	1	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 3.16		μg/kg dry	3.16	1.96	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.16		μg/kg dry	3.16	2.09	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.16		μg/kg dry	3.16	2.41	1	"	"				Х

39.1

1

631

μg/kg dry

< 631

64-17-5

Ethanol

36 4

1

347

µg/kg dry

Diethyl phthalate

< 347

84-66-2

Х

30-130 %

30-130 %

176

347

347

42.9

36.9

41.3

1

1

1

Χ

Χ

Χ

μg/kg dry

μg/kg dry

μg/kg dry

88-06-2

82-68-8

95-94-3

321-60-8

367-12-4

Surrogate recoveries:

2,4,6-Trichlorophenol

2-Fluorobiphenyl

2-Fluorophenol

Pentachloronitrobenzene

1,2,4,5-Tetrachlorobenzen

< 176

< 347

< 347

49

76

	Sample Identification HDDA_5-10		Client P			Matrix		ection Date		Received		
SC59391			6013973	32*2900		Soil	18	3-Sep-20 10):40	21-	Sep-20	
CAS No.	Analyte(s)	Result Fla	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS										
Semivola	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	74		30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	82		30-13	80 %		"	"	u	"	"	
1718-51-0	Terphenyl-dl4	74		30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	60		30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbons	3										
Fingerprir	nting by GC											
<u>Prepared</u>	by method SW846 3546											
	Total Petroleum Hydrocarbons	26.2	mg/kg dry	13.7	11.5	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	78		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	89		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Series by method SW846 3050E											
7440-22-4	Silver	< 3.33	mg/kg dry	3.33	0.180	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	9.30	mg/kg dry	1.66	0.211	1	"	"	23-Sep-20	"	"	Χ
7440-39-3	Barium	45.9	mg/kg dry	1.11	0.131	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.555	mg/kg dry	0.555	0.0287	1	"	"	"	"	"	Х
7440-47-3	Chromium	11.7	mg/kg dry	1.11	0.148	1	"	"	"	"	"	Х
7439-97-6	Mercury	0.0417	mg/kg dry	0.0310	0.0086	1	SW846 7471B	"	29-Sep-20	edt	2001785	Х
Prepared	by method SW846 3050B	<u> </u>										
7439-92-1	Lead	39.2	mg/kg dry	1.66	0.235	1	SW846 6010C	"	28-Sep-20	PMH/ED	Г2001784	Χ
7782-49-2	Selenium	< 1.66	mg/kg dry	1.66	0.317	1	"	"	u	"	"	Χ
7704-34-9	Sulfur	158	mg/kg dry	27.7	1.90	1	"	"	23-Sep-20	"	"	
General C	Themistry Parameters											
	% Solids	93.4	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	octed Analyses by method 7.3.3											
	erformed by Eurofins TestAm	erica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:44	2337	551420	
Prepared	by method 7.3.4						N					

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 43 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

HDDC_5 SC59391-				Client Pr 6013973	-		<u>Matrix</u> Soil		ection Date 3-Sep-20 11			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5035A						ial weight:						
78-93-3	2-Butanone (MEK)	< 86.2 D	1	μg/kg dry	86.2	19.7	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	X
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	110			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		"	u u	"	"	"	
Volatile O	rganic Compounds by SW	846 8260	IS1										
Prepared	by method SW846 5035A	Soil (low level)				<u>Init</u>	ial weight:	8.03 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.66		μg/kg dry	3.66	2.39	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
67-64-1	Acetone	< 36.6		μg/kg dry	36.6	8.21	1	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 3.66		μg/kg dry	3.66	2.20	1		u u	u	"	"	Х
71-43-2	Benzene	< 3.66		μg/kg dry	3.66	2.45	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 3.66		μg/kg dry	3.66	2.44	1	"	"	"	"		Х
74-97-5	Bromochloromethane	< 3.66		μg/kg dry	3.66	2.08	1	"	"	"	"		Х
75-27-4	Bromodichloromethane	< 3.66		μg/kg dry	3.66	2.69	1	"	"	"	"		Х
75-25-2	Bromoform	< 3.66		μg/kg dry	3.66	2.80	1	"	u u	"	"	"	Х
74-83-9	Bromomethane	< 7.33		μg/kg dry	7.33	1.19	1		"	"	"		Х
104-51-8	n-Butylbenzene	< 7.33		μg/kg dry	7.33	3.93	1		"	"	"		Х
135-98-8	sec-Butylbenzene	< 3.66		μg/kg dry	3.66	2.95	1		"	"	"		Х
98-06-6	tert-Butylbenzene	< 3.66		μg/kg dry	3.66	2.89	1		"	"	"		Х
75-15-0	Carbon disulfide	< 7.33		μg/kg dry	7.33	2.57	1		"	"	"		Х
56-23-5	Carbon tetrachloride	< 3.66		μg/kg dry	3.66	2.31	1		"	"	"		Х
108-90-7	Chlorobenzene	< 3.66		μg/kg dry	3.66	2.68	1	"	"	"	"		Х
75-00-3	Chloroethane	< 7.33		μg/kg dry	7.33	2.69	1	"	"	"	"		Х
67-66-3	Chloroform	< 3.66		μg/kg dry	3.66	2.46	1	"	"	"	"		Х
74-87-3	Chloromethane	< 7.33		μg/kg dry	7.33	2.81	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 3.66		μg/kg dry	3.66	2.92	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 3.66		μg/kg dry	3.66	3.18	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop	< 7.33		μg/kg dry	7.33	3.11	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 3.66		μg/kg dry	3.66	2.43	1	"	u u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.66		μg/kg dry	3.66	2.63	1	ıı .	"	"	"	"	Х
74-95-3	Dibromomethane	< 3.66		μg/kg dry	3.66	2.15	1	ıı .	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.66		μg/kg dry	3.66	3.40	1	ıı .	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.66		μg/kg dry	3.66	2.94	1	"	"		"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.66		μg/kg dry	3.66	3.47	1	"	"			"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.33		μg/kg dry	7.33	1.96	1	"	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 3.66		μg/kg dry	3.66	2.48	1	"	"	•	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.66		μg/kg dry	3.66	2.47	1	n .	"	"		"	Х
75-35-4	1,1-Dichloroethene	< 3.66		μg/kg dry	3.66	2.24	1	m .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.66		μg/kg dry	3.66	2.12	1	ıı .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.66		μg/kg dry	3.66	2.28	1	"	"		"	"	Х
78-87-5	1,2-Dichloropropane	< 3.66		μg/kg dry	3.66	2.43	1	"	"		"	"	Х
142-28-9	1,3-Dichloropropane	< 3.66		μg/kg dry	3.66	2.80	1	"					Х

Ethanol

< 733

64-17-5

45.4

1

733

μg/kg dry

39 9

1

381

µg/kg dry

Diethyl phthalate

< 381

84-66-2

Х

Client Project # 60139732*2900

Matrix Soil Collection Date/Time 18-Sep-20 11:38 Received 21-Sep-20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by O	GCMS											
Semivola	tile Organic Compounds												
131-11-3	Dimethyl phthalate	< 381		μg/kg dry	381	42.8	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Х
105-67-9	2,4-Dimethylphenol	< 381		μg/kg dry	381	30.1	1	"	"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 381		μg/kg dry	381	40.7	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 381		μg/kg dry	381	54.5	1	"	"	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	< 381		μg/kg dry	381	39.4	1	"	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 193		μg/kg dry	193	46.1	1	"	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 193		μg/kg dry	193	39.3	1	"	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 381		μg/kg dry	381	56.6	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 76.9		μg/kg dry	76.9	45.1	1	"	"	"	"	"	Χ
86-73-7	Fluorene	< 76.9		μg/kg dry	76.9	49.7	1	"	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	< 193		μg/kg dry	193	48.4	1		"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	< 193		μg/kg dry	193	48.4	1		"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadien	< 193		μg/kg dry	193	48.5	1		"	"	"	"	Х
	е							_		_			.,
67-72-1	Hexachloroethane	< 193		μg/kg dry	193	43.5	1						X
193-39-5	Indeno (1,2,3-cd) pyrene	< 76.9		µg/kg dry	76.9	52.6	1	"					X
78-59-1	Isophorone	< 193		µg/kg dry	193	29.6	1	"			"	"	X
91-57-6	2-Methylnaphthalene	< 76.9		µg/kg dry	76.9	53.8	1	"			"		X
95-48-7	2-Methylphenol	< 381		μg/kg dry	381	30.6	1	"		"		"	Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 381		μg/kg dry	381	29.9	1	"		"	"	"	Х
91-20-3	Naphthalene	< 76.9		μg/kg dry	76.9	44.4	1	"	"	"	"		Χ
88-74-4	2-Nitroaniline	< 381		μg/kg dry	381	34.5	1	"	"	"	"		Х
99-09-2	3-Nitroaniline	< 381		μg/kg dry	381	35.2	1	"	"	"	"		Х
100-01-6	4-Nitroaniline	< 193		μg/kg dry	193	50.7	1	"	"	"	"		Х
98-95-3	Nitrobenzene	< 193		μg/kg dry	193	44.5	1	"	"	"	"		Х
88-75-5	2-Nitrophenol	< 193		μg/kg dry	193	33.7	1	"	"	"	"		Х
100-02-7	4-Nitrophenol	< 1520		μg/kg dry	1520	50.6	1	"	"	"	"	"	Х
62-75-9	N-Nitrosodimethylamine	< 193		μg/kg dry	193	25.1	1		"	"	"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 193		μg/kg dry	193	33.7	1	"	"	"	"	"	Х
86-30-6	N-Nitrosodiphenylamine	< 381		μg/kg dry	381	38.7	1		"	"	"		Х
87-86-5	Pentachlorophenol	< 381		μg/kg dry	381	45.3	1		"	"	"		Х
85-01-8	Phenanthrene	< 76.9		μg/kg dry	76.9	43.6	1		"	"	"		Х
108-95-2	Phenol	< 381		μg/kg dry	381	38.5	1		"	"	"		Х
129-00-0	Pyrene	< 76.9		μg/kg dry	76.9	42.4	1		"	"	"		Х
110-86-1	Pyridine	< 381		μg/kg dry	381	90.1	1	"	"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 381		μg/kg dry	381	46.8	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 76.9		μg/kg dry	76.9	42.4	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 381		μg/kg dry	381	39.3	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 193		μg/kg dry	193	47.0	1	"	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	< 381		μg/kg dry	381	40.5	1	"	"	"		"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 381		µg/kg dry	381	45.3	1	··	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	49			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	77			30-13								

Sample Id HDDC_5 SC59391-			·	Project # 32*2900		<u>Matrix</u> Soil		ection Date 3-Sep-20 11			ceived Sep-20	
CAS No.	Analyte(s)	Result I	Flag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS										
Semivolat	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	64		30-13	30 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	67		30-13	30 %		"	"	u	"	"	
1718-51-0	Terphenyl-dl4	69		30-13	30 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	69		30-13	30 %		"	"	u	"	"	
Extractab	le Petroleum Hydrocarbons											
	nting by GC by method SW846 3546											
riepaieu	Total Petroleum Hydrocarbons	< 15.1	mg/kg dry	15.1	12.7	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate i	recoveries:											
84-15-1	o-Terphenyl	71		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	86		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Series by method SW846 3050B	Methods										
7440-22-4	Silver	< 3.89	mg/kg dry	3.89	0.210	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	5.98	mg/kg dry	1.95	0.247	1		"	23-Sep-20	"	"	Х
7440-39-3	Barium	20.4	mg/kg dry	1.30	0.153	1	"	"	u	"	"	Х
7440-43-9	Cadmium	< 0.649	mg/kg dry	0.649	0.0336	1	"	"	"	"	"	Χ
7440-47-3	Chromium	7.03	mg/kg dry	1.30	0.173	1	"	"	u	"	"	Х
7439-97-6	Mercury	< 0.0316	mg/kg dry	0.0316	0.0088	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
Prepared	by method SW846 3050B											
7439-92-1	Lead	3.36	mg/kg dry	1.95	0.275	1	SW846 6010C	"	28-Sep-20	PMH/ED	Г2001784	Χ
7782-49-2	Selenium	< 1.95	mg/kg dry	1.95	0.371	1	"	"	"	"	"	Х
7704-34-9	Sulfur	83.8	mg/kg dry	32.4	2.22	1	"	"	23-Sep-20	"	"	
General C	hemistry Parameters											
	% Solids	85.0	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	cted Analyses by method 7.3.3											
Analysis pe	erformed by Eurofins TestAme	erica - Buffalo - 2337	7									
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:46	2337	551420	
Prepared	by method 7.3.4						11					

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 48 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

Sample Id Trip Blan SC59391-				Client Pr 6013973			<u>Matrix</u> Trip Blaı	·	ection Date 3-Sep-20 00			eceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5035A	Soil (high level)				<u>Init</u>	tial weight:	<u>15 g</u>					
78-93-3	2-Butanone (MEK)	< 100 D		μg/kg wet	100	22.8	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		"	"	u u	"	"	
2037-26-5	Toluene-d8	110			70-13	0 %		"	"	u	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		"	"	u	"	"	
1868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	u	"	"	
	rganic Compounds by SW												
	by method SW846 5035A			,,	5.00		tial weight:	_				0004000	
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00		μg/kg wet	5.00	3.26	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 50.0		μg/kg wet	50.0	11.2	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 5.00		μg/kg wet	5.00	3.00	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 5.00		μg/kg wet	5.00	3.34	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 5.00		μg/kg wet	5.00	3.33	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 5.00		μg/kg wet	5.00	2.84	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 5.00		μg/kg wet	5.00	3.67	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 5.00		μg/kg wet	5.00	3.82	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 10.0		μg/kg wet	10.0	1.63	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 10.0		μg/kg wet	10.0	5.36	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.00		μg/kg wet	5.00	4.03	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.00		μg/kg wet	5.00	3.94	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 10.0		μg/kg wet	10.0	3.51	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.00		μg/kg wet	5.00	3.15	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.00		μg/kg wet	5.00	3.66	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 10.0		μg/kg wet	10.0	3.67	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 5.00		μg/kg wet	5.00	3.36	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 10.0		μg/kg wet	10.0	3.84	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.00		μg/kg wet	5.00	3.98	1		"		"	"	Х
106-43-4	4-Chlorotoluene	< 5.00		μg/kg wet	5.00	4.34	1	"			"		X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0		μg/kg wet	10.0	4.24	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.00		μg/kg wet	5.00	3.31	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00	3.59	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 5.00		μg/kg wet	5.00	2.94	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.64	1	"	"	u u	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.01	1	n .	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.74	1	"	"	u u	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0	2.68	1	n	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.00		μg/kg wet	5.00	3.39	1	II .	n	u	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.00		μg/kg wet	5.00	3.37	1	II .	n n	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.00		μg/kg wet	5.00	3.06	1	n .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	2.89	1	II .	u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	3.11	1	II .	n	u	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.00		μg/kg wet	5.00	3.31	1	II .	n	u	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.00		μg/kg wet	5.00	3.82	1	"	"	"	"	"	Х

Trip Blan			<u>Client P</u> 6013973	-		<u>Matrix</u> Trip Blan		ection Date 8-Sep-20 00			ceived Sep-20	
CAS No.	Analyte(s)	Result Flo	ig Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	ganic Compounds											
Volatile Or	ganic Compounds by SW	<u>846 8260</u>					_					
504.00.7	0.0 8: 11	. 5.00	, ,	5.00		tial weight:	_				0004000	,
594-20-7	2,2-Dichloropropane	< 5.00	μg/kg wet	5.00	3.45	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	6 X
563-58-6	1,1-Dichloropropene	< 5.00	μg/kg wet	5.00	3.40	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.00	μg/kg wet	5.00	3.26	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.00	μg/kg wet	5.00	3.80	1	ıı	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.00	μg/kg wet	5.00	3.57	1	ıı	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 10.0	μg/kg wet	10.0	5.03	1	u	u	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0	μg/kg wet	10.0	2.94	1	u	u	"	"	"	Х
98-82-8	Isopropylbenzene	< 5.00	μg/kg wet	5.00	3.78	1	ıı	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	< 5.00	μg/kg wet	5.00	4.91	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 5.00	μg/kg wet	5.00	2.77	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	μg/kg wet	10.0	3.23	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 10.0	μg/kg wet	10.0	2.68	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 5.00	μg/kg wet	5.00	4.52	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 5.00	μg/kg wet	5.00	4.23	1	"	"	"	"	"	Х
100-42-5	Styrene	< 5.00	μg/kg wet	5.00	3.87	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00	μg/kg wet	5.00	3.75	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.00	μg/kg wet	5.00	4.58	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 5.00	μg/kg wet	5.00	2.78	1	"	"	"	"	"	Х
108-88-3	Toluene	< 5.00	μg/kg wet	5.00	3.17	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.22	1	"	u	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.61	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.75	1	"	u u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.00	μg/kg wet	5.00	3.41	1	"	u u	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 5.00	μg/kg wet	5.00	3.77	1	"	u u	"	"	"	Х
79-01-6	Trichloroethene	< 5.00	μg/kg wet	5.00	3.36	1	"	u u	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00	μg/kg wet	5.00	3.82	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 5.00	μg/kg wet	5.00	4.40	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 5.00	μg/kg wet	5.00	4.23	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.00	μg/kg wet	5.00	4.25	1		"	"	"	"	Х
75-01-4	Vinyl chloride	< 5.00	μg/kg wet	5.00	3.05	1	"	u	"	"	"	Х
179601-23-1	m,p-Xylene	< 10.0	μg/kg wet	10.0	6.83	1	"	u	"	"	"	Х
95-47-6	o-Xylene	< 5.00	μg/kg wet	5.00	3.65	1	m .	u	"	"	"	Х
109-99-9	Tetrahydrofuran	< 10.0	μg/kg wet	10.0	2.53	1	ıı .	"	"	"	"	
60-29-7	Ethyl ether	< 5.00	μg/kg wet	5.00	2.63	1	"	"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 5.00	μg/kg wet	5.00	3.95	1	"		"	"	"	
637-92-3	Ethyl tert-butyl ether	< 5.00	μg/kg wet	5.00	3.29	1	"		"	"	"	
108-20-3	Di-isopropyl ether	< 5.00	μg/kg wet	5.00	3.57	1	"	"	"			
75-65-0	Tert-Butanol / butyl alcohol	< 100	μg/kg wet	100	26.8	1				"	"	Х
123-91-1	1,4-Dioxane	< 100	μg/kg wet	100	31.1	1		u	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 25.0	μg/kg wet	25.0	3.69	1	"	u	"	"	"	X
64-17-5	Ethanol	< 1000	μg/kg wet	1000	62.0	1	"	"				

Surrogate recoveries:

Sample Id Trip Blan SC59391-					Project # 32*2900		<u>Matrix</u> Trip Blar		ection Date 3-Sep-20 00			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	rganic Compounds by SV	N846 8260											
						<u>Init</u>	ial weight:	<u>5 g</u>					
460-00-4	4-Bromofluorobenzene	92			70-130	%		SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	
2037-26-5	Toluene-d8	101			70-130	%		"	"	"		"	
17060-07-0	1,2-Dichloroethane-d4	107			70-130	%		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-130) %		"	"	"	"		

29-Sep-20 15:34 Page 51 of 78

		T1	T	* PD*	Spike	Source	0/BEC	%REC	D.D.C.	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 2001812 - SW846 5035A Soil (high level)										
Blank (2001812-BLK1)					Pre	epared & A	nalyzed: 23-	-Sep-20		
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
Surrogate: 4-Bromofluorobenzene	47.9		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	55.0		μg/l		50.0		110	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.7		μg/l		50.0		111	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		
LCS (2001812-BS1)					Pre	epared & A	nalyzed: 23-	-Sep-20		
2-Butanone (MEK)	24.5	D	μg/l		20.0		122	70-130		
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	55.2		μg/l		50.0		110	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	50.8		μg/l		50.0		102	70-130		
LCS Dup (2001812-BSD1)			13			epared & A	nalyzed: 23-			
2-Butanone (MEK)	25.9	D	μg/l		20.0	oparoa a 7	129	70-130	6	30
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	56.4		μg/l		50.0		113	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.4		μg/l		50.0		113	70-130		
Surrogate: Dibromofluoromethane	51.8		μg/l		50.0		104	70-130		
-	00		F3/-		00.0			70 700		
W846 8260C LLS										
Satch 2001826 - SW846 5035A Soil (low level)					_			0 00		
Blank (2001826-BLK1)	. 5.00			5.00	Pre	epared & A	nalyzed: 28-	-Sep-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00		μg/kg wet	5.00						
Acetone	< 50.0 < 5.00		μg/kg wet	50.0 5.00						
Acrylonitrile Benzene	< 5.00		µg/kg wet	5.00						
Bromobenzene	< 5.00		µg/kg wet µg/kg wet	5.00						
Bromochloromethane	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromodichloromethane	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromoform	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromomethane	< 10.0		μg/kg wet μg/kg wet	10.0						
n-Butylbenzene	< 10.0		μg/kg wet	10.0						
sec-Butylbenzene	< 5.00		μg/kg wet	5.00						
tert-Butylbenzene	< 5.00		μg/kg wet	5.00						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.00		μg/kg wet	5.00						
Chlorobenzene	< 5.00		μg/kg wet	5.00						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.00		μg/kg wet	5.00						
Chloromethane	< 10.0		μg/kg wet	10.0						
2-Chlorotoluene	< 5.00		μg/kg wet	5.00						
4-Chlorotoluene	< 5.00		μg/kg wet	5.00						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.00		μg/kg wet	5.00						
1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00						
Dibromomethane	< 5.00		μg/kg wet	5.00						
1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.00		μg/kg wet	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001826 - SW846 5035A Soil (low level)										
Blank (2001826-BLK1)					Pre	epared & Ar	nalyzed: 28-	Sep-20		
1,2-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,1-Dichloroethene	< 5.00		μg/kg wet	5.00						
cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		μg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		μg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
Ethylbenzene	< 5.00		μg/kg wet	5.00						
Hexachlorobutadiene	< 10.0		μg/kg wet	10.0						
2-Hexanone (MBK)	< 10.0		μg/kg wet	10.0						
Isopropylbenzene	< 5.00		μg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		μg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.00		μg/kg wet	5.00						
n-Propylbenzene	< 5.00		μg/kg wet	5.00						
Styrene	< 5.00		μg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
Tetrachloroethene	< 5.00		μg/kg wet	5.00						
Toluene	< 5.00		μg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00						
Trichloroethene	< 5.00		μg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
Vinyl chloride	< 5.00		μg/kg wet	5.00						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.00		μg/kg wet	5.00						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.00		μg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
Di-isopropyl ether	< 5.00		μg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 100		μg/kg wet	100						
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 1000		μg/kg wet	1000						
Surrogate: 4-Bromofluorobenzene	48.8		μg/kg wet		50.0		98	70-130		
Surrogate: Toluene-d8	51.2		μg/kg wet		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.5		μg/kg wet		50.0		105	70-130		

					Spike	Source		%REC		RPD	
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit	

SW846 8260C LLS

atch 2001826 - SW846 5035A Soil (low level)						
Blank (2001826-BLK1)				Prepared	& Analyzed: 28-	-Sep-20
Surrogate: Dibromofluoromethane	51.9		μg/kg wet	50.0	104	70-130
LCS (2001826-BS1)				Prepared	& Analyzed: 28-	-Sep-20
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.1		μg/kg	20.0	100	70-130
Acetone	10.4	QC6	μg/kg	20.0	52	70-130
Acrylonitrile	18.1		μg/kg	20.0	90	70-130
Benzene	19.7		μg/kg	20.0	98	70-130
Bromobenzene	20.3		μg/kg	20.0	101	70-130
Bromochloromethane	20.6		μg/kg	20.0	103	70-130
Bromodichloromethane	20.0		μg/kg	20.0	100	70-130
Bromoform	20.8		μg/kg	20.0	104	70-130
Bromomethane	21.6		μg/kg	20.0	108	70-130
n-Butylbenzene	20.0		μg/kg	20.0	100	70-130
sec-Butylbenzene	20.5		μg/kg	20.0	102	70-130
tert-Butylbenzene	20.4		μg/kg	20.0	102	70-130
Carbon disulfide	20.4		μg/kg μg/kg	20.0	102	70-130
Carbon tetrachloride	20.1		μg/kg μg/kg	20.0	101	70-130
Chlorobenzene	20.5		μg/kg μg/kg	20.0	103	70-130
Chloroethane	103	BsH,		20.0	513	70-130
Chloroethane	103	QC6	μg/kg	20.0	513	70-130
Chloroform	19.5		μg/kg	20.0	98	70-130
Chloromethane	21.9		μg/kg	20.0	109	70-130
2-Chlorotoluene	18.5		μg/kg	20.0	93	70-130
4-Chlorotoluene	19.3		μg/kg	20.0	96	70-130
1,2-Dibromo-3-chloropropane	19.3		μg/kg	20.0	96	70-130
Dibromochloromethane	20.0		μg/kg	20.0	100	70-130
1,2-Dibromoethane (EDB)	20.1		μg/kg	20.0	100	70-130
Dibromomethane	19.1		μg/kg	20.0	96	70-130
1,2-Dichlorobenzene	20.1		μg/kg	20.0	100	70-130
1,3-Dichlorobenzene	20.3		μg/kg	20.0	101	70-130
1,4-Dichlorobenzene	19.5		μg/kg	20.0	97	70-130
Dichlorodifluoromethane (Freon12)	21.6		μg/kg	20.0	108	70-130
1,1-Dichloroethane	19.8		μg/kg	20.0	99	70-130
1,2-Dichloroethane	20.0		μg/kg	20.0	100	70-130
1,1-Dichloroethene	19.7		μg/kg	20.0	99	70-130
cis-1,2-Dichloroethene	19.6		μg/kg	20.0	98	70-130
trans-1,2-Dichloroethene	19.8		μg/kg	20.0	99	70-130
1,2-Dichloropropane	19.3		μg/kg	20.0	97	70-130
1,3-Dichloropropane	19.7		μg/kg	20.0	98	70-130
2,2-Dichloropropane	20.0		μg/kg	20.0	100	70-130
1,1-Dichloropropene	20.0		μg/kg	20.0	100	70-130
cis-1,3-Dichloropropene	19.2		μg/kg	20.0	96	70-130
trans-1,3-Dichloropropene	17.9		μg/kg	20.0	89	70-130
Ethylbenzene	20.2		μg/kg	20.0	101	70-130
Hexachlorobutadiene	20.7		μg/kg	20.0	104	70-130
2-Hexanone (MBK)	19.2		μg/kg	20.0	96	70-130
Isopropylbenzene	20.4		μg/kg	20.0	102	70-130
4-Isopropyltoluene	19.5		μg/kg μg/kg	20.0	98	70-130
Methyl tert-butyl ether	19.5			20.0	96 97	70-130
4-Methyl-2-pentanone (MIBK)	20.0		μg/kg μg/kg	20.0	100	70-130
Methylene chloride	19.6		μg/kg	20.0	98	70-130

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8260C LLS										
atch 2001826 - SW846 5035A Soil (low level)										
LCS (2001826-BS1)					Pre	epared & Ar	nalyzed: 28-	-Sep-20		
Naphthalene	19.5		μg/kg		20.0		97	70-130		
n-Propylbenzene	20.1		μg/kg		20.0		101	70-130		
Styrene	19.8		μg/kg		20.0		99	70-130		
1,1,1,2-Tetrachloroethane	20.2		μg/kg		20.0		101	70-130		
1,1,2,2-Tetrachloroethane	20.3		μg/kg		20.0		102	70-130		
Tetrachloroethene	20.4		μg/kg		20.0		102	70-130		
Toluene	19.7		μg/kg		20.0		99	70-130		
1,2,3-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130		
1,2,4-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130		
1,3,5-Trichlorobenzene	19.8		μg/kg		20.0		99	70-130		
1,1,1-Trichloroethane	20.3		μg/kg		20.0		102	70-130		
1,1,2-Trichloroethane	19.9		μg/kg		20.0		99	70-130		
Trichloroethene	20.1		μg/kg		20.0		100	70-130		
Trichlorofluoromethane (Freon 11)	19.0		μg/kg		20.0		95	70-130		
1,2,3-Trichloropropane	19.9		μg/kg		20.0		100	70-130		
1,2,4-Trimethylbenzene	20.1		μg/kg		20.0		100	70-130		
1,3,5-Trimethylbenzene	19.7		μg/kg		20.0		98	70-130		
Vinyl chloride	21.8		μg/kg		20.0		109	70-130		
m,p-Xylene	38.8		μg/kg		40.0		97	70-130		
o-Xylene	20.2		μg/kg		20.0		101	70-130		
Tetrahydrofuran	17.7		μg/kg		20.0		89	70-130		
Ethyl ether	18.6		μg/kg		20.0		93	70-130		
Tert-amyl methyl ether	20.4		μg/kg		20.0		102	70-130		
Ethyl tert-butyl ether	18.9		μg/kg		20.0		95	70-130		
Di-isopropyl ether	19.3		μg/kg		20.0		96	70-130		
Tert-Butanol / butyl alcohol	182		μg/kg		200		91	70-130		
1,4-Dioxane	198		μg/kg		200		99	70-130		
trans-1,4-Dichloro-2-butene	20.0		μg/kg		20.0		100	70-130		
Ethanol	208	QC6	μg/kg		400		52	70-130		
Surrogate: 4-Bromofluorobenzene	51.1		μg/kg wet		50.0		102	70-130		
Surrogate: Toluene-d8	50.6		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.1		µg/kg wet		50.0		100	70-130		
Surrogate: Dibromofluoromethane	50.8		μg/kg wet		50.0		102	70-130		
LCS Dup (2001826-BSD1)			10 0			epared & Ar	nalyzed: 28-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0		μg/kg		20.0		100	70-130	0.4	30
Acetone	10.3	QC6	μg/kg		20.0		52	70-130	0.4	30
Acrylonitrile	20.1		μg/kg		20.0		101	70-130	11	30
Benzene	20.2		μg/kg		20.0		101	70-130	2	30
Bromobenzene	19.1		μg/kg		20.0		95	70-130	6	30
Bromochloromethane	20.8		μg/kg		20.0		104	70-130	1	30
Bromodichloromethane	20.9		μg/kg		20.0		104	70-130	4	30
Bromoform	19.4		μg/kg		20.0		97	70-130	7	30
Bromomethane	22.2		μg/kg		20.0		111	70-130	2	30
n-Butylbenzene	20.8		μg/kg		20.0		104	70-130	4	30
sec-Butylbenzene	19.6		μg/kg		20.0		98	70-130	4	30
tert-Butylbenzene	19.4		μg/kg		20.0		97	70-130	5	30
Carbon disulfide	20.3		μg/kg		20.0		102	70-130	1	30
Carbon tetrachloride	19.9		μg/kg		20.0		100	70-130	3	30
Chlorobenzene	19.2		μg/kg		20.0		96	70-130	7	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001826 - SW846 5035A Soil (low level)										
LCS Dup (2001826-BSD1)					Pre	epared & Ar	nalyzed: 28-	-Sep-20		
Chloroethane	103	BsH, QC6	μg/kg		20.0		515	70-130	0.5	30
Chloroform	19.9		μg/kg		20.0		100	70-130	2	30
Chloromethane	22.9		μg/kg		20.0		115	70-130	5	30
2-Chlorotoluene	19.4		μg/kg		20.0		97	70-130	5	30
4-Chlorotoluene	19.5		μg/kg		20.0		98	70-130	1	30
1,2-Dibromo-3-chloropropane	20.4		μg/kg		20.0		102	70-130	5	30
Dibromochloromethane	20.0		μg/kg		20.0		100	70-130	0.2	30
1,2-Dibromoethane (EDB)	20.4		μg/kg		20.0		102	70-130	1	30
Dibromomethane	19.6		μg/kg		20.0		98	70-130	2	30
1,2-Dichlorobenzene	20.1		μg/kg		20.0		101	70-130	0.2	30
1,3-Dichlorobenzene	19.1		μg/kg		20.0		96	70-130	6	30
1,4-Dichlorobenzene	19.8		μg/kg		20.0		99	70-130	2	30
Dichlorodifluoromethane (Freon12)	22.1		μg/kg		20.0		110	70-130	2	30
1,1-Dichloroethane	21.1		μg/kg		20.0		105	70-130	6	30
1,2-Dichloroethane	21.0		μg/kg		20.0		105	70-130	5	30
1,1-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.6	30
cis-1,2-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.9	30
trans-1,2-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.3	30
1,2-Dichloropropane	20.9		μg/kg		20.0		105	70-130	8	30
1,3-Dichloropropane	20.6		μg/kg		20.0		103	70-130	4	30
2,2-Dichloropropane	20.0		μg/kg		20.0		100	70-130	0.1	30
1,1-Dichloropropene	20.6		μg/kg		20.0		103	70-130	3	30
cis-1,3-Dichloropropene	20.2		μg/kg		20.0		101	70-130	5	30
trans-1,3-Dichloropropene	18.5		μg/kg		20.0		92	70-130	3	30
Ethylbenzene	19.7		μg/kg		20.0		99	70-130	2	30
Hexachlorobutadiene	20.3		μg/kg		20.0		102	70-130	2	30
2-Hexanone (MBK)	21.2		μg/kg		20.0		106	70-130	10	30
Isopropylbenzene	19.6		μg/kg		20.0		98	70-130	4	30
4-Isopropyltoluene	20.2		μg/kg		20.0		101	70-130	3	30
Methyl tert-butyl ether	19.9		μg/kg		20.0		99	70-130	2	30
4-Methyl-2-pentanone (MIBK)	21.3		μg/kg		20.0		107	70-130	7	30
Methylene chloride	18.5		μg/kg		20.0		92	70-130	6	30
Naphthalene	20.4		μg/kg		20.0		102	70-130	4	30
n-Propylbenzene	19.5		μg/kg		20.0		98	70-130	3	30
Styrene	19.2		μg/kg		20.0		96	70-130	3	30
1,1,1,2-Tetrachloroethane	19.1		μg/kg		20.0		95	70-130	6	30
1,1,2,2-Tetrachloroethane	20.1		μg/kg		20.0		101	70-130	0.8	30
Tetrachloroethene	19.5		μg/kg		20.0		98	70-130	4	30
Toluene	19.6		μg/kg		20.0		98	70-130	0.6	30
1,2,3-Trichlorobenzene	19.9		μg/kg		20.0		100	70-130	3	30
1,2,4-Trichlorobenzene	19.5		μg/kg		20.0		98	70-130	0.9	30
1,3,5-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130	2	30
1,1,1-Trichloroethane	20.4		μg/kg		20.0		102	70-130	0.2	30
1,1,2-Trichloroethane	20.5		μg/kg		20.0		102	70-130	3	30
Trichloroethene	20.0		μg/kg μg/kg		20.0		100	70-130	0.2	30
Trichlorofluoromethane (Freon 11)	18.0		μg/kg μg/kg		20.0		90	70-130	5	30
1,2,3-Trichloropropane	19.5		μg/kg μg/kg		20.0		97	70-130	2	30
1,2,4-Trimethylbenzene	19.0		μg/kg μg/kg		20.0		95	70-130	6	30
1,3,5-Trimethylbenzene	18.8		μg/kg μg/kg		20.0		93 94	70-130	5	30
1,0,0-11111001131001120110	10.0		₽9/N9		20.0		J-T	10-100	J	30

36.8 19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	Flag QC6	Units µg/kg	*RDL	Pre 40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Source Result	%REC nalyzed: 28- 92 95 99 98 109 103 105	Sep-20 70-130 70-130 70-130 70-130 70-130 70-130 70-130	5 6 11 5 7 8	30 30 30 30 30 30 30
19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg		40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	epared & Ar	92 95 99 98 109 103 105	70-130 70-130 70-130 70-130 70-130 70-130	6 11 5 7 8	30 30 30 30
19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg		40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	epared & Ar	92 95 99 98 109 103 105	70-130 70-130 70-130 70-130 70-130 70-130	6 11 5 7 8	30 30 30 30
19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg		40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	epared & Ar	92 95 99 98 109 103 105	70-130 70-130 70-130 70-130 70-130 70-130	6 11 5 7 8	30 30 30 30
19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg		40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	92 95 99 98 109 103 105	70-130 70-130 70-130 70-130 70-130 70-130	6 11 5 7 8	30 30 30 30
19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg		20.0 20.0 20.0 20.0 20.0 20.0 20.0		95 99 98 109 103 105	70-130 70-130 70-130 70-130 70-130	6 11 5 7 8	30 30 30 30
19.8 19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg		20.0 20.0 20.0 20.0 20.0 20.0		99 98 109 103 105	70-130 70-130 70-130 70-130	11 5 7 8	30 30 30
19.6 21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg		20.0 20.0 20.0 20.0 20.0		98 109 103 105	70-130 70-130 70-130	5 7 8	30 30
21.9 20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg wet		20.0 20.0 20.0 200		109 103 105	70-130 70-130	7 8	30
20.6 20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg		20.0 20.0 200		103 105	70-130	8	
20.9 180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg µg/kg		20.0 200		105			30
180 184 20.2 294 50.2 51.2 52.4 50.0	QC6	µg/kg µg/kg µg/kg µg/kg wet		200			70-130		00
184 20.2 294 50.2 51.2 52.4 50.0	QC6	μg/kg μg/kg μg/kg μg/kg wet					70 100		30
20.2 294 50.2 51.2 52.4 50.0	QC6	μg/kg μg/kg μg/kg wet		200		90	70-130	1	30
50.2 51.2 52.4 50.0	QC6	μg/kg μg/kg wet				92	70-130	7	30
50.2 51.2 52.4 50.0	QC6	μg/kg wet		20.0		101	70-130	1	30
51.2 52.4 50.0				400		73	70-130	34	30
52.4 50.0		ua/ka wet		50.0		100	70-130		
50.0		Marka Mer		50.0		102	70-130		
		μg/kg wet		50.0		105	70-130		
4.74		μg/kg wet		50.0		100	70-130		
4.74				Pre	epared & Ar	nalyzed: 28-	Sep-20		
		μg/kg		5.00	•	95	0-200		
14.4	QC6	μg/kg		5.00		288	0-200		
5.71		μg/kg		5.00		114	0-200		
4.60									
4.08		μg/kg		5.00		82	0-200		
4.27		μg/kg		5.00		85	0-200		
6.73		µg/kg		5.00		135	0-200		
4.85		μg/kg		5.00		97	0-200		
4.88		μg/kg		5.00		98	0-200		
4.29		μg/kg		5.00		86	0-200		
4.13		μg/kg		5.00		83	0-200		
4.28		μg/kg		5.00		86	0-200		
3.96		μg/kg		5.00		79	0-200		
4.44		μg/kg		5.00		89	0-200		
4.82		μg/kg		5.00		96	0-200		
4.48				5.00		90	0-200		
4.17				5.00		83	0-200		
	4.39 4.01 4.49 4.64 4.10 4.53 4.63 4.01 3.71 4.60 4.08 4.27 6.73 4.85 4.88 4.29 4.13 4.28 3.96 4.44 4.82 4.48	4.39 4.01 4.49 4.64 4.10 4.53 4.63 4.01 3.71 4.60 4.08 4.27 6.73 4.85 4.88 4.29 4.13 4.28 3.96 4.44 4.82 4.48 4.17 4.53 3.81 4.98 4.77 4.53 4.56 4.73	4.39	4.39 µg/kg 4.01 µg/kg 4.49 µg/kg 4.64 µg/kg 4.10 µg/kg 4.53 µg/kg 4.63 µg/kg 4.63 µg/kg 4.01 µg/kg 3.71 µg/kg 4.60 µg/kg 4.27 µg/kg 4.27 µg/kg 4.27 µg/kg 4.28 µg/kg 4.29 µg/kg 4.13 µg/kg 4.28 µg/kg 4.28 µg/kg 4.28 µg/kg 4.44 µg/kg 4.44 µg/kg 4.453 µg/kg 4.53 µg/kg 4.77 µg/kg 4.53 µg/kg 4.53 µg/kg 4.55 µg/kg 4.77 µg/kg 4.53 µg/kg 4.53 µg/kg 4.55 µg/kg 4.77 µg/kg 4.53 µg/kg 4.55 µg/kg 4.56 µg/kg 4.77 µg/kg 4.53 µg/kg 4.56 µg/kg	4.39	4.39	4.39 μg/kg 5.00 88 4.01 μg/kg 5.00 80 4.49 μg/kg 5.00 90 4.64 μg/kg 5.00 93 4.10 μg/kg 5.00 82 4.53 μg/kg 5.00 91 4.63 μg/kg 5.00 93 4.01 μg/kg 5.00 80 3.71 μg/kg 5.00 74 4.60 μg/kg 5.00 92 4.08 μg/kg 5.00 85 6.73 μg/kg 5.00 85 6.73 μg/kg 5.00 97 4.85 μg/kg 5.00 98 4.29 μg/kg 5.00 86 4.13 μg/kg 5.00 86 4.13 μg/kg 5.00 86 4.28 μg/kg 5.00 96 4.44 μg/kg 5.00 96 4.48 μg/kg 5.00 91 4.53 μg/kg 5.00	4.39 µg/kg 5.00 88 0-200 4.01 µg/kg 5.00 80 0-200 4.49 µg/kg 5.00 90 0-200 4.64 µg/kg 5.00 93 0-200 4.10 µg/kg 5.00 82 0-200 4.53 µg/kg 5.00 91 0-200 4.63 µg/kg 5.00 93 0-200 4.01 µg/kg 5.00 80 0-200 3.71 µg/kg 5.00 74 0-200 4.60 µg/kg 5.00 92 0-200 4.08 µg/kg 5.00 82 0-200 4.27 µg/kg 5.00 85 0-200 4.27 µg/kg 5.00 85 0-200 4.85 µg/kg 5.00 97 0-200 4.88 µg/kg 5.00 98 0-200 4.13 µg/kg 5.00 86 0-200 4.13 µg/kg 5.00 86 0-200	4.39 μg/kg 5.00 88 0-200 4.01 μg/kg 5.00 80 0-200 4.49 μg/kg 5.00 90 0-200 4.64 μg/kg 5.00 93 0-200 4.10 μg/kg 5.00 82 0-200 4.53 μg/kg 5.00 91 0-200 4.63 μg/kg 5.00 93 0-200 4.01 μg/kg 5.00 80 0-200 4.01 μg/kg 5.00 80 0-200 4.01 μg/kg 5.00 80 0-200 4.60 μg/kg 5.00 92 0-200 4.60 μg/kg 5.00 85 0-200 4.27 μg/kg 5.00 85 0-200 4.27 μg/kg 5.00 85 0-200 4.85 μg/kg 5.00 97 0-200 4.29 μg/kg 5.00 86 0-200 4.13 μg/kg 5.00 86 0-200

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS										
atch 2001826 - SW846 5035A Soil (low level)										
MRL Check (2001826-MRL1)					Pre	epared & A	nalyzed: 28-	Sep-20		
1,3-Dichloropropane	4.47		μg/kg		5.00		89	0-200		
2,2-Dichloropropane	4.11		μg/kg		5.00		82	0-200		
1,1-Dichloropropene	4.46		μg/kg		5.00		89	0-200		
cis-1,3-Dichloropropene	4.06		μg/kg		5.00		81	0-200		
trans-1,3-Dichloropropene	4.23		μg/kg		5.00		85	0-200		
Ethylbenzene	7.78		μg/kg		5.00		156	0-200		
Hexachlorobutadiene	4.38		μg/kg		5.00		88	0-200		
2-Hexanone (MBK)	4.92		μg/kg		5.00		98	0-200		
Isopropylbenzene	4.10		μg/kg		5.00		82	0-200		
4-Isopropyltoluene	4.15		μg/kg		5.00		83	0-200		
Methyl tert-butyl ether	4.51		μg/kg		5.00		90	0-200		
4-Methyl-2-pentanone (MIBK)	5.13		μg/kg		5.00		103	0-200		
Methylene chloride	7.36		μg/kg		5.00		147	0-200		
Naphthalene	4.59		μg/kg		5.00		92	0-200		
n-Propylbenzene	5.39		μg/kg		5.00		108	0-200		
Styrene	3.68		μg/kg		5.00		74	0-200		
1,1,1,2-Tetrachloroethane	4.28		μg/kg		5.00		86	0-200		
1,1,2,2-Tetrachloroethane	4.78		μg/kg		5.00		96	0-200		
Tetrachloroethene	4.63		μg/kg		5.00		93	0-200		
Toluene	5.51		μg/kg		5.00		110	0-200		
1,2,3-Trichlorobenzene	4.29		μg/kg		5.00		86	0-200		
1,2,4-Trichlorobenzene	4.33		μg/kg		5.00		87	0-200		
1,3,5-Trichlorobenzene	4.33		μg/kg		5.00		87	0-200		
1,1,1-Trichloroethane	4.25		μg/kg		5.00		85	0-200		
1,1,2-Trichloroethane	4.89		μg/kg		5.00		98	0-200		
Trichloroethene	4.40		μg/kg		5.00		88	0-200		
Trichlorofluoromethane (Freon 11)	6.74		μg/kg		5.00		135	0-200		
1,2,3-Trichloropropane	4.42		μg/kg		5.00		88	0-200		
1,2,4-Trimethylbenzene	9.77		μg/kg		5.00		195	0-200		
1,3,5-Trimethylbenzene	5.29		μg/kg		5.00		106	0-200		
Vinyl chloride	4.33		μg/kg		5.00		87	0-200		
m,p-Xylene	18.9		μg/kg		10.0		189	0-200		
o-Xylene	6.33		μg/kg		5.00		127	0-200		
Tetrahydrofuran	4.04		μg/kg		5.00		81	0-200		
Ethyl ether	4.83		μg/kg		5.00		97	0-200		
Tert-amyl methyl ether	5.68		μg/kg		5.00		114	0-200		
Ethyl tert-butyl ether	4.26		μg/kg		5.00		85	0-200		
Di-isopropyl ether	4.48		μg/kg		5.00		90	0-200		
Tert-Butanol / butyl alcohol	52.3		μg/kg		50.0		105	0-200		
1,4-Dioxane	41.2		μg/kg		50.0		82	0-200		
trans-1,4-Dichloro-2-butene	3.70		μg/kg		5.00		74	0-200		
Ethanol	190		μg/kg		100		190	0-200		
Surrogate: 4-Bromofluorobenzene	48.4		μg/kg wet		50.0		97	70-130		
Surrogate: Toluene-d8	52.2		μg/kg wet		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.9		μg/kg wet		50.0		110	70-130		
Surrogate: Dibromofluoromethane	50.7		μg/kg wet		50.0		101	70-130		
atch 2001880 - SW846 5035A Soil (low level)										
Blank (2001880-BLK1)					Pr	epared & A	nalyzed: 29-	Sep-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00		μg/kg wet	5.00	<u>- 10</u>	,, a. oa a A	,			
Acetone	< 50.0		μg/kg wet μg/kg wet	50.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
Blank (2001880-BLK1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
Acrylonitrile	< 5.00		μg/kg wet	5.00			-			
Benzene	< 5.00		μg/kg wet	5.00						
Bromobenzene	< 5.00		μg/kg wet	5.00						
Bromochloromethane	< 5.00		μg/kg wet	5.00						
Bromodichloromethane	< 5.00		μg/kg wet	5.00						
Bromoform	< 5.00		μg/kg wet	5.00						
Bromomethane	< 10.0		μg/kg wet	10.0						
n-Butylbenzene	< 10.0		μg/kg wet	10.0						
sec-Butylbenzene	< 5.00		μg/kg wet	5.00						
tert-Butylbenzene	< 5.00		μg/kg wet	5.00						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.00		μg/kg wet	5.00						
Chlorobenzene	< 5.00		μg/kg wet	5.00						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.00		μg/kg wet	5.00						
Chloromethane	< 10.0		μg/kg wet	10.0						
2-Chlorotoluene	< 5.00		μg/kg wet μg/kg wet	5.00						
4-Chlorotoluene	< 5.00		μg/kg wet	5.00						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet μg/kg wet	10.0						
Dibromochloromethane	< 5.00		μg/kg wet	5.00						
1,2-Dibromoethane (EDB)	< 5.00		µg/kg wet µg/kg wet	5.00						
Dibromomethane	< 5.00		μg/kg wet	5.00						
1,2-Dichlorobenzene	< 5.00			5.00						
			μg/kg wet							
1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,2-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,1-Dichloroethene	< 5.00		μg/kg wet	5.00						
cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		μg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		μg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
Ethylbenzene	< 5.00		μg/kg wet	5.00						
Hexachlorobutadiene	< 10.0		μg/kg wet	10.0						
2-Hexanone (MBK)	< 10.0		μg/kg wet	10.0						
Isopropylbenzene	< 5.00		μg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		μg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.00		μg/kg wet	5.00						
n-Propylbenzene	< 5.00		μg/kg wet	5.00						
Styrene	< 5.00		μg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
Blank (2001880-BLK1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
Tetrachloroethene	< 5.00		μg/kg wet	5.00						
Toluene	< 5.00		μg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00						
Trichloroethene	< 5.00		μg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
Vinyl chloride	< 5.00		μg/kg wet	5.00						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.00		μg/kg wet μg/kg wet	5.00						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.00		μg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		μg/kg wet μg/kg wet	5.00						
Di-isopropyl ether	< 5.00		μg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 100		μg/kg wet μg/kg wet	100						
1,4-Dioxane	< 100		μg/kg wet μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet μg/kg wet	25.0						
Ethanol	< 1000		μg/kg wet	1000						
					50.0			70.400		
Surrogate: 4-Bromofluorobenzene	47.3		μg/kg wet		50.0		95	70-130		
Surrogate: Toluene-d8	51.4		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.2		μg/kg wet		50.0		104	70-130		
Surrogate: Dibromofluoromethane	51.0		μg/kg wet		50.0		102	70-130		
LCS (2001880-BS1)						epared & A	nalyzed: 29-	<u>Sep-20</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.5		μg/kg		20.0		92	70-130		
Acetone	7.81	QC6	μg/kg		20.0		39	70-130		
Acrylonitrile	17.5		μg/kg		20.0		87	70-130		
Benzene	19.5		μg/kg		20.0		97	70-130		
Bromobenzene	20.4		μg/kg		20.0		102	70-130		
Bromochloromethane	19.3		μg/kg		20.0		96	70-130		
Bromodichloromethane	19.7		μg/kg		20.0		98	70-130		
Bromoform	19.7		μg/kg		20.0		98	70-130		
Bromomethane	22.2		μg/kg		20.0		111	70-130		
n-Butylbenzene	19.7		μg/kg		20.0		98	70-130		
sec-Butylbenzene	19.6		μg/kg		20.0		98	70-130		
tert-Butylbenzene	19.8		μg/kg		20.0		99	70-130		
Carbon disulfide	19.6		μg/kg		20.0		98	70-130		
Carbon tetrachloride	18.8		μg/kg		20.0		94	70-130		
Chlorobenzene	20.2		μg/kg		20.0		101	70-130		
Chloroethane	105	BsH, QC6	μg/kg		20.0		525	70-130		
Chloroform	19.8		μg/kg		20.0		99	70-130		
Chloromethane	20.3		μg/kg		20.0		102	70-130		
2-Chlorotoluene	18.2		μg/kg		20.0		91	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
LCS (2001880-BS1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
1,2-Dibromo-3-chloropropane	18.5		μg/kg		20.0		92	70-130		
Dibromochloromethane	19.2		μg/kg		20.0		96	70-130		
1,2-Dibromoethane (EDB)	19.3		μg/kg		20.0		97	70-130		
Dibromomethane	18.9		μg/kg		20.0		94	70-130		
1,2-Dichlorobenzene	20.5		μg/kg		20.0		102	70-130		
1,3-Dichlorobenzene	20.4		μg/kg		20.0		102	70-130		
1,4-Dichlorobenzene	20.0		μg/kg		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	18.5		μg/kg		20.0		92	70-130		
1,1-Dichloroethane	19.8		μg/kg		20.0		99	70-130		
1,2-Dichloroethane	19.8		μg/kg		20.0		99	70-130		
1,1-Dichloroethene	18.6		μg/kg		20.0		93	70-130		
cis-1,2-Dichloroethene	19.4		μg/kg		20.0		97	70-130		
trans-1,2-Dichloroethene	19.5		μg/kg		20.0		98	70-130		
1,2-Dichloropropane	19.8		μg/kg		20.0		99	70-130		
1,3-Dichloropropane	19.4		μg/kg		20.0		97	70-130		
2,2-Dichloropropane	19.3		μg/kg		20.0		96	70-130		
1,1-Dichloropropene	18.7		μg/kg		20.0		93	70-130		
cis-1,3-Dichloropropene	18.8		μg/kg		20.0		94	70-130		
trans-1,3-Dichloropropene	17.9		μg/kg		20.0		89	70-130		
Ethylbenzene	19.6		μg/kg		20.0		98	70-130		
Hexachlorobutadiene	20.2		μg/kg		20.0		101	70-130		
2-Hexanone (MBK)	16.6		μg/kg		20.0		83	70-130		
Isopropylbenzene	19.4		μg/kg		20.0		97	70-130		
4-Isopropyltoluene	19.2		μg/kg		20.0		96	70-130		
Methyl tert-butyl ether	18.1		μg/kg		20.0		91	70-130		
4-Methyl-2-pentanone (MIBK)	17.9		μg/kg μg/kg		20.0		89	70-130		
Methylene chloride	17.4		μg/kg μg/kg		20.0		87	70-130		
Naphthalene	18.8		μg/kg μg/kg		20.0		94	70-130		
n-Propylbenzene	20.0		μg/kg μg/kg		20.0		100	70-130		
Styrene	19.4		μg/kg μg/kg		20.0		97	70-130		
1,1,1,2-Tetrachloroethane	20.0				20.0		100	70-130		
1,1,2,1-Tetrachloroethane			μg/kg		20.0		97	70-130		
. , ,	19.5		μg/kg		20.0			70-130		
Tetrachloroethene	19.6		μg/kg		20.0		98	70-130 70-130		
Toluene	19.8		μg/kg				99			
1,2,3-Trichlorobenzene	20.3		μg/kg		20.0		102	70-130		
1,2,4-Trichlorobenzene	19.9		μg/kg		20.0		100	70-130		
1,3,5-Trichlorobenzene	20.1		μg/kg		20.0		101	70-130		
1,1,1-Trichloroethane	19.7		μg/kg "		20.0		98	70-130		
1,1,2-Trichloroethane	19.5		μg/kg "		20.0		97	70-130		
Trichloroethene	19.1		μg/kg "		20.0		95	70-130		
Trichlorofluoromethane (Freon 11)	17.5		μg/kg 		20.0		88	70-130		
1,2,3-Trichloropropane	18.0		μg/kg 		20.0		90	70-130		
1,2,4-Trimethylbenzene	19.7		μg/kg "		20.0		99	70-130		
1,3,5-Trimethylbenzene	19.4		μg/kg 		20.0		97	70-130		
Vinyl chloride	21.7		μg/kg		20.0		108	70-130		
m,p-Xylene	37.6		μg/kg		40.0		94	70-130		
o-Xylene	19.1		μg/kg		20.0		96	70-130		
Tetrahydrofuran	15.6		μg/kg		20.0		78	70-130		
Ethyl ether	18.0		μg/kg		20.0		90	70-130		
Tert-amyl methyl ether	20.1		μg/kg		20.0		101	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8260C LLS										
atch 2001880 - SW846 5035A Soil (low level)										
LCS (2001880-BS1)					Pre	epared & Ar	nalyzed: 29-	Sep-20		
Ethyl tert-butyl ether	18.4		μg/kg		20.0		92	70-130		
Di-isopropyl ether	18.6		μg/kg		20.0		93	70-130		
Tert-Butanol / butyl alcohol	160		μg/kg		200		80	70-130		
1,4-Dioxane	172		μg/kg		200		86	70-130		
trans-1,4-Dichloro-2-butene	18.6		μg/kg		20.0		93	70-130		
Ethanol	281		μg/kg		400		70	70-130		
Surrogate: 4-Bromofluorobenzene	49.3		μg/kg wet		50.0		99	70-130		
Surrogate: Toluene-d8	50.7		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.2		μg/kg wet		50.0		98	70-130		
Surrogate: Dibromofluoromethane	49.3		μg/kg wet		50.0		99	70-130		
LCS Dup (2001880-BSD1)	40.0		µg/kg wet			anarad & A	nalyzed: 29-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.9		μg/kg		20.0	parcu & Al	95	70-130	3	30
Acetone	10.9	QC6	μg/kg μg/kg		20.0		95 50	70-130 70-130	25	30
		QOU			20.0		96	70-130 70-130	9	30
Acrylonitrile Benzene	19.2		μg/kg		20.0		96 101	70-130 70-130		30
Bromobenzene	20.3 19.6		μg/kg		20.0			70-130 70-130	4	30
			μg/kg				98		4	
Bromochloromethane	19.8		μg/kg		20.0		99	70-130	3	30
Bromodichloromethane	20.2		μg/kg		20.0		101	70-130	3	30
Bromoform	19.4		μg/kg		20.0		97	70-130	1	30
Bromomethane	22.0		μg/kg "		20.0		110	70-130	0.8	30
n-Butylbenzene	20.4		μg/kg "		20.0		102	70-130	3	30
sec-Butylbenzene	19.5		μg/kg		20.0		98	70-130	0.5	30
tert-Butylbenzene	19.5		μg/kg "		20.0		97	70-130	2	30
Carbon disulfide	20.1		μg/kg "		20.0		101	70-130	3	30
Carbon tetrachloride	19.6		μg/kg 		20.0		98	70-130	4	30
Chlorobenzene	19.9		μg/kg 		20.0		99	70-130	2	30
Chloroethane	108	BsH, QC6	μg/kg		20.0		541	70-130	3	30
Chloroform	19.9		μg/kg		20.0		100	70-130	0.7	30
Chloromethane	21.1		μg/kg		20.0		106	70-130	4	30
2-Chlorotoluene	18.3		μg/kg		20.0		92	70-130	0.5	30
4-Chlorotoluene	19.2		μg/kg		20.0		96	70-130	0.2	30
1,2-Dibromo-3-chloropropane	18.7		μg/kg		20.0		93	70-130	1	30
Dibromochloromethane	19.5		μg/kg		20.0		97	70-130	1	30
1,2-Dibromoethane (EDB)	19.7		μg/kg		20.0		99	70-130	2	30
Dibromomethane	18.8		μg/kg		20.0		94	70-130	0.4	30
1,2-Dichlorobenzene	20.3		μg/kg		20.0		101	70-130	1	30
1,3-Dichlorobenzene	19.8		μg/kg		20.0		99	70-130	3	30
1,4-Dichlorobenzene	20.2		μg/kg		20.0		101	70-130	1	30
Dichlorodifluoromethane (Freon12)	19.0		μg/kg		20.0		95	70-130	3	30
1,1-Dichloroethane	21.3		μg/kg		20.0		107	70-130	8	30
1,2-Dichloroethane	20.7		μg/kg		20.0		104	70-130	5	30
1,1-Dichloroethene	18.9		μg/kg		20.0		94	70-130	2	30
cis-1,2-Dichloroethene	20.2		μg/kg		20.0		101	70-130	4	30
trans-1,2-Dichloroethene	20.1		μg/kg		20.0		101	70-130	3	30
1,2-Dichloropropane	20.6		μg/kg		20.0		103	70-130	4	30
1,3-Dichloropropane	19.6		μg/kg		20.0		98	70-130	0.8	30
2,2-Dichloropropane	19.6		μg/kg		20.0		98	70-130	2	30
1,1-Dichloropropene	20.0		μg/kg		20.0		100	70-130	7	30
cis-1,3-Dichloropropene	19.7		μg/kg μg/kg		20.0		99	70-130	, 5	30

					Spike	Source		%REC	_	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
LCS Dup (2001880-BSD1)					Pre	epared & A	nalyzed: 29-	-Sep-20		
trans-1,3-Dichloropropene	18.5		μg/kg		20.0		93	70-130	4	30
Ethylbenzene	19.5		μg/kg		20.0		98	70-130	0.3	30
Hexachlorobutadiene	19.2		μg/kg		20.0		96	70-130	5	30
2-Hexanone (MBK)	18.6		μg/kg		20.0		93	70-130	11	30
Isopropylbenzene	19.4		μg/kg		20.0		97	70-130	0	30
4-Isopropyltoluene	19.7		μg/kg		20.0		98	70-130	3	30
Methyl tert-butyl ether	19.0		μg/kg		20.0		95	70-130	5	30
4-Methyl-2-pentanone (MIBK)	19.3		μg/kg		20.0		96	70-130	7	30
Methylene chloride	17.8		μg/kg		20.0		89	70-130	2	30
Naphthalene	18.9		μg/kg		20.0		95	70-130	0.6	30
n-Propylbenzene	20.2		μg/kg		20.0		101	70-130	1	30
Styrene	19.4		μg/kg		20.0		97	70-130	0	30
1,1,1,2-Tetrachloroethane	19.6		μg/kg		20.0		98	70-130	2	30
1,1,2,2-Tetrachloroethane	19.6		μg/kg		20.0		98	70-130	0.7	30
Tetrachloroethene	19.3		μg/kg		20.0		96	70-130	2	30
Toluene	20.0		μg/kg		20.0		100	70-130	0.9	30
1,2,3-Trichlorobenzene	19.6		μg/kg μg/kg		20.0		98	70-130	4	30
1,2,4-Trichlorobenzene	19.3		μg/kg μg/kg		20.0		97	70-130	3	30
1,3,5-Trichlorobenzene	19.4		μg/kg μg/kg		20.0		97	70-130	4	30
1,1,1-Trichloroethane	20.0		μg/kg μg/kg		20.0		100	70-130	2	30
1,1,2-Trichloroethane	20.3		μg/kg μg/kg		20.0		100	70-130	4	30
Trichloroethene	20.3 19.7				20.0		99	70-130	3	30
			μg/kg							
Trichlorofluoromethane (Freon 11)	17.5		μg/kg		20.0		87	70-130	0.3	30
1,2,3-Trichloropropane	18.8		μg/kg		20.0		94	70-130	5	30
1,2,4-Trimethylbenzene	19.9		μg/kg		20.0		99	70-130	0.8	30
1,3,5-Trimethylbenzene	19.4		μg/kg 		20.0		97	70-130	0.3	30
Vinyl chloride	22.9		μg/kg 		20.0		115	70-130	6	30
m,p-Xylene	37.5		μg/kg 		40.0		94	70-130	0.3	30
o-Xylene	19.3		μg/kg		20.0		96	70-130	1	30
Tetrahydrofuran	17.0		μg/kg		20.0		85	70-130	9	30
Ethyl ether	19.0		μg/kg		20.0		95	70-130	5	30
Tert-amyl methyl ether	21.0		μg/kg		20.0		105	70-130	4	30
Ethyl tert-butyl ether	19.4		μg/kg		20.0		97	70-130	5	30
Di-isopropyl ether	20.2		μg/kg		20.0		101	70-130	8	30
Tert-Butanol / butyl alcohol	168		μg/kg		200		84	70-130	5	30
1,4-Dioxane	166		μg/kg		200		83	70-130	4	30
trans-1,4-Dichloro-2-butene	18.8		μg/kg		20.0		94	70-130	1	30
Ethanol	298		μg/kg		400		74	70-130	6	30
Surrogate: 4-Bromofluorobenzene	49.2		μg/kg wet		50.0		98	70-130		
Surrogate: Toluene-d8	51.6		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.7		μg/kg wet		50.0		103	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/kg wet		50.0		101	70-130		
MRL Check (2001880-MRL1)						epared & A	nalyzed: 29-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	5.13		μg/kg		5.00		103	0-200		
Acetone	0.00		μg/kg μg/kg		5.00		100	0-200		
Acrylonitrile	5.32		μg/kg μg/kg		5.00		106	0-200		
Benzene			μg/kg μg/kg		5.00		99	0-200		
	4.96 4.93									
Bromobleromethane	4.93		μg/kg		5.00		99 100	0-200		
Bromochloromethane	5.47 5.89		μg/kg μg/kg		5.00 5.00		109 118	0-200 0-200		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS										
atch 2001880 - SW846 5035A Soil (low level)										
MRL Check (2001880-MRL1)					Pre	epared & Ar	nalyzed: 29-	Sep-20		
Bromoform	5.24		μg/kg		5.00		105	0-200		
Bromomethane	6.79		μg/kg		5.00		136	0-200		
2-Butanone (MEK)	0.00		μg/kg		5.00			0-200		
n-Butylbenzene	5.10		μg/kg		5.00		102	0-200		
sec-Butylbenzene	4.94		μg/kg		5.00		99	0-200		
tert-Butylbenzene	4.25		μg/kg		5.00		85	0-200		
Carbon disulfide	5.57		μg/kg		5.00		111	0-200		
Carbon tetrachloride	4.64		μg/kg		5.00		93	0-200		
Chlorobenzene	5.35		μg/kg		5.00		107	0-200		
Chloroethane	29.4		μg/kg		5.00		588	0-200		
Chloroform	5.62		μg/kg		5.00		112	0-200		
Chloromethane	5.07		μg/kg		5.00		101	0-200		
2-Chlorotoluene	5.02		μg/kg μg/kg		5.00		100	0-200		
4-Chlorotoluene	5.02 4.96		μg/kg μg/kg		5.00		99	0-200		
1,2-Dibromo-3-chloropropane	5.23		μg/kg μg/kg		5.00		105	0-200		
							99	0-200		
Dibromochloromethane 1,2-Dibromoethane (EDB)	4.93		μg/kg		5.00			0-200		
	5.35		μg/kg		5.00		107			
Dibromomethane	4.89		μg/kg		5.00		98	0-200		
1,2-Dichlorobenzene	5.62		μg/kg "		5.00		112	0-200		
1,3-Dichlorobenzene	5.34		μg/kg "		5.00		107	0-200		
1,4-Dichlorobenzene	5.70		μg/kg 		5.00		114	0-200		
Dichlorodifluoromethane (Freon12)	4.53		μg/kg 		5.00		91	0-200		
1,1-Dichloroethane	5.57		μg/kg		5.00		111	0-200		
1,2-Dichloroethane	5.37		µg/kg		5.00		107	0-200		
1,1-Dichloroethene	4.97		µg/kg		5.00		99	0-200		
cis-1,2-Dichloroethene	4.77		µg/kg		5.00		95	0-200		
trans-1,2-Dichloroethene	5.22		µg/kg		5.00		104	0-200		
1,2-Dichloropropane	5.51		μg/kg		5.00		110	0-200		
1,3-Dichloropropane	5.30		µg/kg		5.00		106	0-200		
2,2-Dichloropropane	4.97		μg/kg		5.00		99	0-200		
1,1-Dichloropropene	4.59		μg/kg		5.00		92	0-200		
cis-1,3-Dichloropropene	4.74		μg/kg		5.00		95	0-200		
trans-1,3-Dichloropropene	4.55		μg/kg		5.00		91	0-200		
Ethylbenzene	5.14		μg/kg		5.00		103	0-200		
Hexachlorobutadiene	5.19		μg/kg		5.00		104	0-200		
2-Hexanone (MBK)	5.06		μg/kg		5.00		101	0-200		
Isopropylbenzene	4.85		μg/kg		5.00		97	0-200		
4-Isopropyltoluene	4.63		μg/kg		5.00		93	0-200		
Methyl tert-butyl ether	4.53		μg/kg		5.00		91	0-200		
4-Methyl-2-pentanone (MIBK)	5.26		μg/kg		5.00		105	0-200		
Methylene chloride	5.10		μg/kg		5.00		102	0-200		
Naphthalene	4.64		μg/kg		5.00		93	0-200		
n-Propylbenzene	5.99		μg/kg		5.00		120	0-200		
Styrene	4.46		μg/kg		5.00		89	0-200		
1,1,1,2-Tetrachloroethane	5.13		μg/kg		5.00		103	0-200		
1,1,2,2-Tetrachloroethane	5.91		μg/kg		5.00		118	0-200		
Tetrachloroethene	4.66		μg/kg μg/kg		5.00		93	0-200		
Toluene	5.05		μg/kg μg/kg		5.00		101	0-200		
1,2,3-Trichlorobenzene					5.00		101	0-200		
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	5.06 5.31		μg/kg μg/kg		5.00		101	0-200		

nalyte(s)	Result	Flag Uı	nits *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS									
atch 2001880 - SW846 5035A Soil (low level)									
MRL Check (2001880-MRL1)				Pro	epared & Ar	nalyzed: 29-	Sep-20		
1,3,5-Trichlorobenzene	5.30	μg	/kg	5.00		106	0-200		
1,1,1-Trichloroethane	5.01	μд	/kg	5.00		100	0-200		
1,1,2-Trichloroethane	6.33	μg	/kg	5.00		127	0-200		
Trichloroethene	4.89	μд	/kg	5.00		98	0-200		
Trichlorofluoromethane (Freon 11)	4.54	μд	/kg	5.00		91	0-200		
1,2,3-Trichloropropane	5.32	μд	/kg	5.00		106	0-200		
1,2,4-Trimethylbenzene	4.67	μд	/kg	5.00		93	0-200		
1,3,5-Trimethylbenzene	4.40	μд	/kg	5.00		88	0-200		
Vinyl chloride	5.85	μд	/kg	5.00		117	0-200		
m,p-Xylene	8.95	μд	/kg	10.0		90	0-200		
o-Xylene	4.49	μд	/kg	5.00		90	0-200		
Tetrahydrofuran	4.60	μд	/kg	5.00		92	0-200		
Ethyl ether	4.62	μд	/kg	5.00		92	0-200		
Tert-amyl methyl ether	6.14	μд	/kg	5.00		123	0-200		
Ethyl tert-butyl ether	4.79	μд	/kg	5.00		96	0-200		
Di-isopropyl ether	4.94	μд	/kg	5.00		99	0-200		
Tert-Butanol / butyl alcohol	52.0	μд	/kg	50.0		104	0-200		
1,4-Dioxane	43.5	μд	/kg	50.0		87	0-200		
trans-1,4-Dichloro-2-butene	4.44	μд	/kg	5.00		89	0-200		
Ethanol	86.1	μд	/kg	100		86	0-200		
Surrogate: 4-Bromofluorobenzene	47.2	μg/k	g wet	50.0	_	94	70-130		
Surrogate: Toluene-d8	51.0	μg/k	g wet	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.0	μg/k	g wet	50.0		106	70-130		
Surrogate: Dibromofluoromethane	50.3	μg/k	g wet	50.0		101	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
Blank (2001800-BLK1)					Pre	epared & Ar	nalyzed: 22-	Sep-20		
Acenaphthene	< 66.7		μg/kg wet	66.7	·		-			
Acenaphthylene	< 66.7		μg/kg wet	66.7						
Aniline	< 330		μg/kg wet	330						
Anthracene	< 66.7		μg/kg wet	66.7						
Azobenzene/Diphenyldiazene	< 330		μg/kg wet	330						
Benzidine	< 660		μg/kg wet	660						
Benzo (a) anthracene	< 66.7		μg/kg wet	66.7						
Benzo (a) pyrene	< 66.7		μg/kg wet	66.7						
Benzo (b) fluoranthene	< 66.7		μg/kg wet	66.7						
Benzo (g,h,i) perylene	< 66.7		μg/kg wet	66.7						
Benzo (k) fluoranthene	< 66.7		μg/kg wet	66.7						
Benzoic acid	< 330		μg/kg wet	330						
Benzyl alcohol	< 330		μg/kg wet	330						
Bis(2-chloroethoxy)methane	< 330		μg/kg wet	330						
Bis(2-chloroethyl)ether	< 167		µg/kg wet	167						
Bis(2-chloroisopropyl)ether	< 167		μg/kg wet	167						
Bis(2-ethylhexyl)phthalate	< 167		μg/kg wet	167						
4-Bromophenyl phenyl ether	< 330		μg/kg wet	330						
Butyl benzyl phthalate	< 330		μg/kg wet μg/kg wet	330						
Carbazole	< 167		μg/kg wet μg/kg wet	167						
4-Chloro-3-methylphenol	< 330		μg/kg wet μg/kg wet	330						
4-Chloroaniline	< 167		μg/kg wet μg/kg wet	167						
2-Chloronaphthalene	< 330		μg/kg wet μg/kg wet	330						
2-Chlorophenol	< 167		μg/kg wet μg/kg wet	167						
4-Chlorophenyl phenyl ether	< 330		μg/kg wet μg/kg wet	330						
Chrysene	< 66.7			66.7						
Dibenzo (a,h) anthracene	< 66.7		μg/kg wet	66.7						
Dibenzofuran	< 167		μg/kg wet	167						
			μg/kg wet							
1,2-Dichlorobenzene 1,3-Dichlorobenzene	< 330		μg/kg wet	330						
,	< 330		μg/kg wet	330						
1,4-Dichlorobenzene	< 330		μg/kg wet	330						
3,3'-Dichlorobenzidine	< 330		μg/kg wet	330						
2,4-Dichlorophenol	< 167		μg/kg wet	167						
Diethyl phthalate	< 330		μg/kg wet	330						
Dimethyl phthalate	< 330 < 330		µg/kg wet	330						
2,4-Dimethylphenol			μg/kg wet	330						
Di-n-butyl phthalate	< 330		μg/kg wet	330						
4,6-Dinitro-2-methylphenol	< 330		μg/kg wet	330						
2,4-Dinitrophenol	< 330		μg/kg wet	330						
2,4-Dinitrotoluene	< 167		μg/kg wet	167						
2,6-Dinitrotoluene	< 167		μg/kg wet	167						
Di-n-octyl phthalate	< 330		μg/kg wet	330						
Fluoranthene	< 66.7		μg/kg wet	66.7						
Fluorene	< 66.7		μg/kg wet	66.7						
Hexachlorobenzene	< 167		μg/kg wet	167						
Hexachlorobutadiene	< 167		μg/kg wet	167						
Hexachlorocyclopentadiene	< 167		μg/kg wet	167						
Hexachloroethane	< 167		μg/kg wet	167						
Indeno (1,2,3-cd) pyrene	< 66.7		μg/kg wet	66.7						
Isophorone	< 167		μg/kg wet	167						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
Blank (2001800-BLK1)					Pre	epared & A	nalyzed: 22-	Sep-20		
2-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2-Methylphenol	< 330		μg/kg wet	330						
3 & 4-Methylphenol	< 330		μg/kg wet	330						
Naphthalene	< 66.7		μg/kg wet	66.7						
2-Nitroaniline	< 330		μg/kg wet	330						
3-Nitroaniline	< 330		μg/kg wet	330						
4-Nitroaniline	< 167		μg/kg wet	167						
Nitrobenzene	< 167		μg/kg wet	167						
2-Nitrophenol	< 167		μg/kg wet	167						
4-Nitrophenol	< 1320		μg/kg wet	1320						
N-Nitrosodimethylamine	< 167		μg/kg wet	167						
N-Nitrosodi-n-propylamine	< 167		μg/kg wet	167						
N-Nitrosodiphenylamine	< 330		μg/kg wet	330						
Pentachlorophenol	< 330		μg/kg wet	330						
Phenanthrene	< 66.7		μg/kg wet	66.7						
Phenol	< 330		μg/kg wet	330						
Pyrene	< 66.7		μg/kg wet	66.7						
Pyridine	< 330		μg/kg wet	330						
1,2,4-Trichlorobenzene	< 330		μg/kg wet	330						
1-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2,4,5-Trichlorophenol	< 330		μg/kg wet	330						
2,4,6-Trichlorophenol	< 167		μg/kg wet	167						
Pentachloronitrobenzene	< 330		μg/kg wet	330						
1,2,4,5-Tetrachlorobenzene	< 330		μg/kg wet	330						
					1670		44	20.420		
Surrogate: 2-Fluorobiphenyl	731		μg/kg wet		1670		44	30-130		
Surrogate: 2-Fluorophenol	1200		μg/kg wet		1670		72	30-130		
Surrogate: Nitrobenzene-d5	1370		μg/kg wet		1670 1670		82	30-130		
Surrogate: Phenol-d5	1160		μg/kg wet		1670		70	30-130		
Surrogate: Terphenyl-dl4	1140		μg/kg wet		1670		68	30-130		
Surrogate: 2,4,6-Tribromophenol	1020		μg/kg wet		1670		61	30-130		
LCS (2001800-BS1)						epared & Ai	nalyzed: 22-			
Acenaphthene	946		μg/kg wet	66.7	1670		57	40-140		
Acenaphthylene	1120		μg/kg wet	66.7	1670		67	40-140		
Aniline	656	QC6	μg/kg wet	330	1670		39	40-140		
Anthracene	1210		μg/kg wet	66.7	1670		73	40-140		
Azobenzene/Diphenyldiazene	1440		μg/kg wet	330	1670		87	40-140		
Benzidine	211	QC6	μg/kg wet	660	1670		13	40-140		
Benzo (a) anthracene	1350		μg/kg wet	66.7	1670		81	40-140		
Benzo (a) pyrene	1430		μg/kg wet	66.7	1670		86	40-140		
Benzo (b) fluoranthene	1550		μg/kg wet	66.7	1670		93	40-140		
Benzo (g,h,i) perylene	1490		μg/kg wet	66.7	1670		89	40-140		
Benzo (k) fluoranthene	1230		μg/kg wet	66.7	1670		74	40-140		
Benzoic acid	262	QC6	μg/kg wet	330	1670		16	30-130		
Benzyl alcohol	1070		μg/kg wet	330	1670		64	40-140		
Bis(2-chloroethoxy)methane	1220		μg/kg wet	330	1670		73	40-140		
Bis(2-chloroethyl)ether	1060		μg/kg wet	167	1670		64	40-140		
Bis(2-chloroisopropyl)ether	874		μg/kg wet	167	1670		52	40-140		
Bis(2-ethylhexyl)phthalate	1260		μg/kg wet	167	1670		76	40-140		
4-Bromophenyl phenyl ether	329	QC6	μg/kg wet	330	1670		20	40-140		
Butyl benzyl phthalate	1330		μg/kg wet	330	1670		80	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
LCS (2001800-BS1)					Pre	epared & Ai	nalyzed: 22-	Sep-20		
Carbazole	1290		μg/kg wet	167	1670		77	40-140		
4-Chloro-3-methylphenol	1360		μg/kg wet	330	1670		82	30-130		
4-Chloroaniline	845		μg/kg wet	167	1670		51	40-140		
2-Chloronaphthalene	1180		μg/kg wet	330	1670		71	40-140		
2-Chlorophenol	987		μg/kg wet	167	1670		59	30-130		
4-Chlorophenyl phenyl ether	1280		μg/kg wet	330	1670		77	40-140		
Chrysene	1240		μg/kg wet	66.7	1670		75	40-140		
Dibenzo (a,h) anthracene	1450		μg/kg wet	66.7	1670		87	40-140		
Dibenzofuran	1180		μg/kg wet	167	1670		71	40-140		
1,2-Dichlorobenzene	1320		μg/kg wet	330	1670		79	40-140		
1,3-Dichlorobenzene	1190		μg/kg wet	330	1670		72	40-140		
1,4-Dichlorobenzene	1170		μg/kg wet	330	1670		70	40-140		
3,3'-Dichlorobenzidine	1260		μg/kg wet	330	1670		76	40-140		
2,4-Dichlorophenol	1260		μg/kg wet	167	1670		76	30-130		
Diethyl phthalate	1070		μg/kg wet	330	1670		64	40-140		
Dimethyl phthalate	1250		μg/kg wet	330	1670		75	40-140		
2,4-Dimethylphenol	1080		μg/kg wet	330	1670		65	30-130		
Di-n-butyl phthalate	1140		μg/kg wet	330	1670		69	40-140		
4,6-Dinitro-2-methylphenol	907		μg/kg wet	330	1670		54	30-130		
2,4-Dinitrophenol	584		μg/kg wet	330	1670		35	30-130		
2,4-Dinitrotoluene	1200		μg/kg wet	167	1670		72	40-140		
2,6-Dinitrotoluene	1340		μg/kg wet	167	1670		80	40-140		
Di-n-octyl phthalate	1250		μg/kg wet	330	1670		75	40-140		
Fluoranthene	816		μg/kg wet μg/kg wet	66.7	1670		49	40-140		
Fluorene	1100			66.7	1670		66	40-140		
Hexachlorobenzene	1520		μg/kg wet	167	1670		91	40-140		
Hexachlorobutadiene			μg/kg wet					40-140		
	1300		μg/kg wet	167	1670		78 79			
Hexachlorocyclopentadiene	1310		μg/kg wet	167	1670		78 70	40-140 40-140		
Hexachloroethane	1170		μg/kg wet	167	1670		70			
Indeno (1,2,3-cd) pyrene	1690		μg/kg wet	66.7	1670		101	40-140		
Isophorone	1050		μg/kg wet	167	1670		63	40-140		
2-Methylnaphthalene	986		μg/kg wet	66.7	1670		59	40-140		
2-Methylphenol	1120		μg/kg wet	330	1670		67	30-130		
3 & 4-Methylphenol	1060		μg/kg wet	330	1670		64	30-130		
Naphthalene	1170		μg/kg wet	66.7	1670		70	40-140		
2-Nitroaniline	932		μg/kg wet	330	1670		56	40-140		
3-Nitroaniline	794		μg/kg wet	330	1670		48	40-140		
4-Nitroaniline	1180		μg/kg wet	167	1670		71	40-140		
Nitrobenzene	1340		μg/kg wet	167	1670		80	40-140		
2-Nitrophenol	1110		μg/kg wet	167	1670		67	30-130		
4-Nitrophenol	1180		μg/kg wet	1320	1670		71	30-130		
N-Nitrosodimethylamine	988		μg/kg wet	167	1670		59	40-140		
N-Nitrosodi-n-propylamine	870		μg/kg wet	167	1670		52	40-140		
N-Nitrosodiphenylamine	1500		μg/kg wet	330	1670		90	40-140		
Pentachlorophenol	933		μg/kg wet	330	1670		56	30-130		
Phenanthrene	1190		μg/kg wet	66.7	1670		71	40-140		
Phenol	1290		μg/kg wet	330	1670		77	30-130		
Pyrene	811		μg/kg wet	66.7	1670		49	40-140		
Pyridine	546	QC6	μg/kg wet	330	1670		33	40-140		
1,2,4-Trichlorobenzene	1380		μg/kg wet	330	1670		83	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8270D										
atch 2001800 - SW846 3546										
LCS (2001800-BS1)					Pre	epared & Ai	nalyzed: 22-	Sep-20		
1-Methylnaphthalene	959		μg/kg wet	66.7	1670		58	40-140		
2,4,5-Trichlorophenol	1130		μg/kg wet	330	1670		68	30-130		
2,4,6-Trichlorophenol	872		μg/kg wet	167	1670		52	30-130		
Pentachloronitrobenzene	1470		μg/kg wet	330	1670		88	40-140		
1,2,4,5-Tetrachlorobenzene	1080		μg/kg wet	330	1670		65	40-140		
Surrogate: 2-Fluorobiphenyl	827		μg/kg wet		1670		50	30-130		
Surrogate: 2-Fluorophenol	1010		μg/kg wet		1670		60	30-130		
Surrogate: Nitrobenzene-d5	1180		μg/kg wet		1670		71	30-130		
Surrogate: Phenol-d5	1130		μg/kg wet		1670		68	30-130		
Surrogate: Terphenyl-dl4	1280		μg/kg wet		1670		77	30-130		
Surrogate: 2,4,6-Tribromophenol	1180		μg/kg wet		1670		71	30-130		
LCS Dup (2001800-BSD1)					Pre	epared & A	nalyzed: 22-	Sep-20		
Acenaphthene	1080		μg/kg wet	66.7	1670		65	40-140	13	30
Acenaphthylene	1170		μg/kg wet	66.7	1670		70	40-140	4	30
Aniline	686		μg/kg wet	330	1670		41	40-140	5	30
Anthracene	1320		μg/kg wet	66.7	1670		79	40-140	8	30
Azobenzene/Diphenyldiazene	1500		μg/kg wet	330	1670		90	40-140	4	30
Benzidine	221	QC6	μg/kg wet	660	1670		13	40-140	4	30
Benzo (a) anthracene	1490		μg/kg wet	66.7	1670		89	40-140	10	30
Benzo (a) pyrene	1590		μg/kg wet	66.7	1670		96	40-140	10	30
Benzo (b) fluoranthene	1740		μg/kg wet	66.7	1670		104	40-140	11	30
Benzo (g,h,i) perylene	1620		μg/kg wet	66.7	1670		97	40-140	8	30
Benzo (k) fluoranthene	1330		μg/kg wet	66.7	1670		80	40-140	8	30
Benzoic acid	322	QC6	μg/kg wet	330	1670		19	30-130	21	30
Benzyl alcohol	1170		μg/kg wet	330	1670		70	40-140	9	30
Bis(2-chloroethoxy)methane	1170		μg/kg wet	330	1670		70	40-140	4	30
Bis(2-chloroethyl)ether	1030		μg/kg wet	167	1670		62	40-140	3	30
Bis(2-chloroisopropyl)ether	858		μg/kg wet	167	1670		51	40-140	2	30
Bis(2-ethylhexyl)phthalate	1370		μg/kg wet	167	1670		82	40-140	8	30
4-Bromophenyl phenyl ether	354	QC6	μg/kg wet	330	1670		21	40-140	7	30
Butyl benzyl phthalate	1430		μg/kg wet	330	1670		86	40-140	7	30
Carbazole	1400		μg/kg wet	167	1670		84	40-140	8	30
4-Chloro-3-methylphenol	1410		μg/kg wet	330	1670		84	30-130	3	30
4-Chloroaniline	877		μg/kg wet	167	1670		53	40-140	4	30
2-Chloronaphthalene	1200		μg/kg wet	330	1670		72	40-140	2	30
2-Chlorophenol	1060		μg/kg wet	167	1670		63	30-130	7	30
4-Chlorophenyl phenyl ether	1300		μg/kg wet	330	1670		78	40-140	1	30
Chrysene	1310		μg/kg wet	66.7	1670		79	40-140	5	30
Dibenzo (a,h) anthracene	1540		μg/kg wet	66.7	1670		93	40-140	6	30
Dibenzofuran	1270		μg/kg wet	167	1670		76	40-140	7	30
1,2-Dichlorobenzene	1270		μg/kg wet	330	1670		76	40-140	4	30
1,3-Dichlorobenzene	1130		μg/kg wet	330	1670		68	40-140	5	30
1,4-Dichlorobenzene	1250		μg/kg wet	330	1670		75	40-140	7	30
3,3´-Dichlorobenzidine	1380		μg/kg wet	330	1670		83	40-140	8	30
2,4-Dichlorophenol	1310		μg/kg wet	167	1670		78	30-130	3	30
Diethyl phthalate	1150		μg/kg wet	330	1670		69	40-140	7	30
Dimethyl phthalate	1330		μg/kg wet	330	1670		80	40-140	7	30
2,4-Dimethylphenol	1080		μg/kg wet	330	1670		65	30-130	0.09	30
Di-n-butyl phthalate	1260		μg/kg wet μg/kg wet	330	1670		75	40-140	9	30
4,6-Dinitro-2-methylphenol	992		μg/kg wet	330	1670		60	30-130	9	30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8270D										
atch 2001800 - SW846 3546										
LCS Dup (2001800-BSD1)					Pre	epared & Ai	nalyzed: 22-	Sep-20		
2,4-Dinitrophenol	709		μg/kg wet	330	1670		43	30-130	19	30
2,4-Dinitrotoluene	1260		μg/kg wet	167	1670		76	40-140	5	30
2,6-Dinitrotoluene	1350		μg/kg wet	167	1670		81	40-140	1	30
Di-n-octyl phthalate	1400		μg/kg wet	330	1670		84	40-140	12	30
Fluoranthene	880		μg/kg wet	66.7	1670		53	40-140	8	30
Fluorene	1150		μg/kg wet	66.7	1670		69	40-140	5	30
Hexachlorobenzene	1620		μg/kg wet	167	1670		97	40-140	7	30
Hexachlorobutadiene	1230		μg/kg wet	167	1670		74	40-140	5	30
Hexachlorocyclopentadiene	1310		μg/kg wet	167	1670		79	40-140	0.2	30
Hexachloroethane	1180		μg/kg wet	167	1670		71	40-140	0.7	30
Indeno (1,2,3-cd) pyrene	1840		μg/kg wet μg/kg wet	66.7	1670		110	40-140	9	30
Isophorone	1020		μg/kg wet μg/kg wet	167	1670		61	40-140	3	30
2-Methylnaphthalene	1000		μg/kg wet μg/kg wet	66.7	1670		60	40-140	1	30
2-Methylphenol	1110			330	1670		67	30-130	0.7	30
3 & 4-Methylphenol			µg/kg wet	330	1670		69	30-130	9	30
• •	1160		µg/kg wet				68			30
Naphthalene	1140		μg/kg wet	66.7	1670			40-140	3	
2-Nitroaniline	1050		μg/kg wet	330	1670		63	40-140	12	30
3-Nitroaniline	886		μg/kg wet	330	1670		53	40-140	11	30
4-Nitroaniline	1270		μg/kg wet	167	1670		76 	40-140	8	30
Nitrobenzene	1290		μg/kg wet	167	1670		77	40-140	4	30
2-Nitrophenol	1060		μg/kg wet	167	1670		64	30-130	5	30
4-Nitrophenol	1290		μg/kg wet	1320	1670		77	30-130	9	30
N-Nitrosodimethylamine	905		μg/kg wet	167	1670		54	40-140	9	30
N-Nitrosodi-n-propylamine	874		μg/kg wet	167	1670		52	40-140	0.4	30
N-Nitrosodiphenylamine	1590		μg/kg wet	330	1670		95	40-140	6	30
Pentachlorophenol	1060		μg/kg wet	330	1670		64	30-130	13	30
Phenanthrene	1300		μg/kg wet	66.7	1670		78	40-140	9	30
Phenol	1070		µg/kg wet	330	1670		64	30-130	18	30
Pyrene	873		μg/kg wet	66.7	1670		52	40-140	7	30
Pyridine	710		μg/kg wet	330	1670		43	40-140	26	30
1,2,4-Trichlorobenzene	1350		μg/kg wet	330	1670		81	40-140	3	30
1-Methylnaphthalene	1020		μg/kg wet	66.7	1670		61	40-140	6	30
2,4,5-Trichlorophenol	1180		μg/kg wet	330	1670		71	30-130	5	30
2,4,6-Trichlorophenol	925		μg/kg wet	167	1670		55	30-130	6	30
Pentachloronitrobenzene	1540		μg/kg wet	330	1670		92	40-140	5	30
1,2,4,5-Tetrachlorobenzene	1150		μg/kg wet	330	1670		69	40-140	6	30
Surrogate: 2-Fluorobiphenyl	816		μg/kg wet		1670		49	30-130		
Surrogate: 2-Fluorophenol	1060		μg/kg wet		1670		63	30-130		
Surrogate: Nitrobenzene-d5	1180		μg/kg wet		1670		71	30-130		
Surrogate: Phenol-d5	1120		μg/kg wet		1670		67	30-130		
Surrogate: Terphenyl-dl4	1380		μg/kg wet		1670		83	30-130		
Surrogate: 2,4,6-Tribromophenol	1250		μg/kg wet		1670		75	30-130		
Duplicate (2001800-DUP1)		R01	Source: SC	59391-01	Pre	epared & A	nalyzed: 22-	Sep-20		
Acenaphthene	< 377		μg/kg dry	377	<u></u>	BRL	,			30
Acenaphthylene	494		μg/kg dry	377		527			6	30
Aniline	< 1870		μg/kg dry μg/kg dry	1870		BRL			J	30
Anthracene	270	J	μg/kg dry μg/kg dry	377		361			29	30
Azobenzene/Diphenyldiazene	270 < 1870	J	μg/kg dry μg/kg dry	1870		BRL			20	30
Benzidine	< 3730			3730		BRL				30
Benzidine Benzo (a) anthracene	< 3730 867		μg/kg dry μg/kg dry	3730 377		1050			19	30

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
SW846 8270D										
Batch 2001800 - SW846 3546										
<u>Duplicate (2001800-DUP1)</u>		R01	Source: SC	59391-01	Prepared & Analyzed: 22-Sep-20					
Benzo (a) pyrene	1000		μg/kg dry	377		1290			25	30
Benzo (b) fluoranthene	892		μg/kg dry	377		980			9	30
Benzo (g,h,i) perylene	852		μg/kg dry	377		1090			24	30
Benzo (k) fluoranthene	545	QR9	μg/kg dry	377		909			50	30
Benzoic acid	516	J	μg/kg dry	1870		578			11	30
Benzyl alcohol	< 1870		μg/kg dry	1870		BRL				30
Bis(2-chloroethoxy)methane	< 1870		μg/kg dry	1870		BRL				30
Bis(2-chloroethyl)ether	< 944		μg/kg dry	944		BRL				30
Bis(2-chloroisopropyl)ether	< 944		μg/kg dry	944		BRL				30
Bis(2-ethylhexyl)phthalate	< 944		μg/kg dry	944		BRL				30
4-Bromophenyl phenyl ether	< 1870		μg/kg dry	1870		BRL				30
Butyl benzyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Carbazole	< 944		μg/kg dry	944		BRL				30
4-Chloro-3-methylphenol	< 1870		μg/kg dry	1870		BRL				30
4-Chloroaniline	< 944		μg/kg dry	944		BRL				30
2-Chloronaphthalene	< 1870		μg/kg dry	1870		BRL				30
2-Chlorophenol	< 944		μg/kg dry	944		BRL				30
4-Chlorophenyl phenyl ether	< 1870		μg/kg dry	1870		BRL				30
Chrysene	829		μg/kg dry μg/kg dry	377		1010			20	30
Dibenzo (a,h) anthracene	281	J	μg/kg dry μg/kg dry	377		367			27	30
Dibenzofuran	< 944	ŭ	μg/kg dry μg/kg dry	944		BRL			21	30
1,2-Dichlorobenzene	< 1870		μg/kg dry μg/kg dry	1870		BRL				30
1,3-Dichlorobenzene	< 1870 < 1870		μg/kg dry μg/kg dry	1870		BRL				30
1,4-Dichlorobenzene	< 1870 < 1870			1870		BRL				30
	< 1870 < 1870		μg/kg dry			BRL				30
3,3´-Dichlorobenzidine	< 944		μg/kg dry	1870		BRL				30
2,4-Dichlorophenol			μg/kg dry	944						
Diethyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Dimethyl phthalate	< 1870		μg/kg dry	1870		BRL				30
2,4-Dimethylphenol	< 1870		μg/kg dry	1870		BRL				30
Di-n-butyl phthalate	< 1870		μg/kg dry " .	1870		BRL				30
4,6-Dinitro-2-methylphenol	< 1870		μg/kg dry "	1870		BRL				30
2,4-Dinitrophenol	< 1870		μg/kg dry 	1870		320				30
2,4-Dinitrotoluene	< 944		μg/kg dry 	944		BRL				30
2,6-Dinitrotoluene	< 944		μg/kg dry	944		BRL				30
Di-n-octyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Fluoranthene	899		μg/kg dry	377		848			6	30
Fluorene	< 377		μg/kg dry	377		BRL				30
Hexachlorobenzene	< 944		μg/kg dry	944		BRL				30
Hexachlorobutadiene	< 944		μg/kg dry	944		BRL				30
Hexachlorocyclopentadiene	< 944		μg/kg dry	944		BRL				30
Hexachloroethane	< 944		μg/kg dry	944		BRL				30
Indeno (1,2,3-cd) pyrene	714		μg/kg dry	377		905			24	30
Isophorone	< 944		μg/kg dry	944		BRL				30
2-Methylnaphthalene	< 377		μg/kg dry	377		BRL				30
2-Methylphenol	< 1870		μg/kg dry	1870		BRL				30
3 & 4-Methylphenol	< 1870		μg/kg dry	1870		BRL				30
Naphthalene	< 377		μg/kg dry	377		BRL				30
2-Nitroaniline	< 1870		μg/kg dry	1870		BRL				30
3-Nitroaniline	< 1870		μg/kg dry	1870		BRL				30
4-Nitroaniline	< 944		μg/kg dry	944		BRL				30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
<u>Duplicate (2001800-DUP1)</u>		R01	Source: SC	<u>59391-01</u>	Pre	epared & A	nalyzed: 22-	Sep-20		
Nitrobenzene	< 944		μg/kg dry	944		BRL				30
2-Nitrophenol	< 944		μg/kg dry	944		BRL				30
4-Nitrophenol	< 7460		μg/kg dry	7460		BRL				30
N-Nitrosodimethylamine	< 944		μg/kg dry	944		BRL				30
N-Nitrosodi-n-propylamine	< 944		μg/kg dry	944		BRL				30
N-Nitrosodiphenylamine	< 1870		μg/kg dry	1870		BRL				30
Pentachlorophenol	< 1870		μg/kg dry	1870		BRL				30
Phenanthrene	303	J,QR4	μg/kg dry	377		455			40	30
Phenol	< 1870		μg/kg dry	1870		BRL				30
Pyrene	1010		μg/kg dry	377		835			19	30
Pyridine	< 1870		μg/kg dry	1870		BRL				30
1,2,4-Trichlorobenzene	< 1870		μg/kg dry	1870		BRL				30
1-Methylnaphthalene	< 377		μg/kg dry	377		BRL				30
2,4,5-Trichlorophenol	< 1870		μg/kg dry	1870		BRL				30
2,4,6-Trichlorophenol	< 944		μg/kg dry	944		BRL				30
Pentachloronitrobenzene	< 1870		μg/kg dry	1870		BRL				30
1,2,4,5-Tetrachlorobenzene	< 1870		μg/kg dry	1870		BRL				30
Surrogate: 2-Fluorobiphenyl	1490		μg/kg dry		1880		79	30-130		
Surrogate: 2-Fluorophenol	1550		μg/kg dry		1880		82	30-130		
Surrogate: Nitrobenzene-d5	1560		μg/kg dry		1880		83	30-130		
Surrogate: Phenol-d5	1600		μg/kg dry		1880		85	30-130		
Surrogate: Terphenyl-dl4	1380		μg/kg dry		1880		73	30-130		
Surrogate: 2,4,6-Tribromophenol	1180		μg/kg dry		1880		63	30-130		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit		
SW846 8100Mod.												
Batch 2001798 - SW846 3546												
Blank (2001798-BLK1)		Prepared & Analyzed: 22-Sep-20										
Total Petroleum Hydrocarbons	< 13.3		mg/kg wet	13.3								
Surrogate: o-Terphenyl	4.67		mg/kg wet		6.67		70	40-140				
Surrogate: 1-Chlorooctadecane	5.53		mg/kg wet		6.67		83	40-140				
LCS (2001798-BS1)					Pre	epared & A	nalyzed: 22-	-Sep-20				
Total Petroleum Hydrocarbons	265		mg/kg wet	13.3	333		79	40-140				
Surrogate: o-Terphenyl	5.65		mg/kg wet		6.67		85	40-140				
Surrogate: 1-Chlorooctadecane	6.13		mg/kg wet		6.67		92	40-140				
LCS Dup (2001798-BSD1)					Prepared & Analyzed: 22-Sep-20							
Total Petroleum Hydrocarbons	254		mg/kg wet	13.3	333		76	40-140	4	30		
Surrogate: o-Terphenyl	5.44		mg/kg wet		6.67		82	40-140				
Surrogate: 1-Chlorooctadecane	5.92		mg/kg wet		6.67		89	40-140				

$Total\ Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 6010C										
atch 2001784 - SW846 3050B										
Blank (2001784-BLK1)					Pre	epared: 22-	Sep-20 Ar	nalyzed: 23-S	ep-20	
Arsenic	< 1.56		mg/kg wet	1.56					<u>_</u>	
Cadmium	< 0.521		mg/kg wet	0.521						
Chromium	< 1.04		mg/kg wet	1.04						
Lead	< 1.56		mg/kg wet	1.56						
Selenium	< 1.56		mg/kg wet	1.56						
Silver	< 3.12		mg/kg wet	3.12						
Sulfur	< 26.0		mg/kg wet	26.0						
Barium	< 1.04		mg/kg wet	1.04						
LCS (2001784-BS1)					Pre	epared: 22-	Sep-20 Ar	nalyzed: 23-S	ep-20	
Sulfur	113		mg/kg wet	26.2	131	, p a. o a.	87	85-115	<u> </u>	
LCS Dup (2001784-BSD1)						anared: 22-		nalyzed: 23-S	en-20	
Sulfur	110		mg/kg wet	25.2	126	spareu. ZZ-	87	85-115	3	30
	110					naradı 00		nalyzed: 23-S		30
Duplicate (2001784-DUP1)	00.7		Source: SC		Pre		Sep-20 Ar	ialyzed: 23-S		200
Arsenic Cadmium	22.7 < 0.570		mg/kg dry	1.71		23.3 BRL			2	20 20
Chromium			mg/kg dry	0.570					6	
Lead	18.8 20.6		mg/kg dry mg/kg dry	1.14 1.71		17.7 20.1			6 2	20 20
Selenium	20.6 < 1.71			1.71		BRL			2	20
Silver	< 3.42		mg/kg dry	3.42		BRL				20
Sulfur	207		mg/kg dry mg/kg dry	28.5		184			12	20
Barium	56.9		mg/kg dry	1.14		55.5			2	20
	30.9				D		C 20 A-	l		20
Matrix Spike (2001784-MS1) Arsenic	445		Source: SC	1.71	142	23.3		nalyzed: 23-S 75-125	ep-20	
Cadmium	145 119		mg/kg dry	0.569	142	BRL	85 83	75-125 75-125		
Chromium	119		mg/kg dry mg/kg dry	1.14	142	17.7	98	75-125 75-125		
Lead	136			1.71	142	20.1	81	75-125 75-125		
Selenium			mg/kg dry	1.71	142	BRL	82	75-125 75-125		
Silver	117 96.8	QM7	mg/kg dry mg/kg dry	3.42	142	BRL	68	75-125 75-125		
Sulfur	294	QIVII	mg/kg dry	28.5	142	184	77	70-120		
Barium	294		mg/kg dry	1.14	142	55.5	108	70-130 75-125		
	210								an 20	
Matrix Spike Dup (2001784-MSD1)	445		Source: SC					nalyzed: 23-S		20
Arsenic Cadmium	145		mg/kg dry	1.71	143	23.3	85 82	75-125 75-125	0.4	20
Chromium	118		mg/kg dry	0.571 1.14	143 143	BRL 17.7	82 95	75-125 75-125	0.8 2	20 20
	154		mg/kg dry			17.7 20.1				
Lead Selenium	147 120		mg/kg dry mg/kg dry	1.71 1.71	143 143	20.1 BRL	89 84	75-125 75-125	8 2	20 20
		QM7						75-125 75-125		
Silver Sulfur	93.9	QIVII	mg/kg dry	3.43 28.5	143 143	BRL 184	66 74	75-125 70-130	3 1	20 20
Barium	289 197		mg/kg dry	1.14	143	55.5	99	75-125		20
	191		mg/kg dry						6	20
Post Spike (2001784-PS1)	405		Source: SC	,				nalyzed: 23-S	ep-20	
Arsenic	165		mg/kg dry	1.84	153	23.3	92	80-120		
Chromium	139		mg/kg dry	0.612	153	BRL	91	80-120		
Chromium	174		mg/kg dry	1.22	153	17.7	102	80-120 80-120		
Lead	155		mg/kg dry	1.84	153	20.1	88	80-120		
Selenium	136		mg/kg dry	1.84	153	BRL	89	80-120		
Sulfur	310		mg/kg dry	30.6	153	184	82	80-120		
Barium	205		mg/kg dry	1.22	153	55.5	98	80-120		
Reference (2001784-SRM1)						epared: 22-		nalyzed: 23-S	ep-20	
Arsenic	85.4		mg/kg wet	1.50	105		82	70.1-107. 7		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
Batch 2001784 - SW846 3050B										
Reference (2001784-SRM1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 23-S	ep-20	
Cadmium	120		mg/kg wet	0.500	150		80	70.2-106. 7		
Chromium	136		mg/kg wet	1.00	156		87	72.3-111.6		
Lead	80.8		mg/kg wet	1.50	93.0		87	73-116.9		
Selenium	35.4		mg/kg wet	1.50	45.4		78	74.1-112. 2		
Silver	33.8		mg/kg wet	3.00	41.3		82	69.3-117. 3		
Barium	293		mg/kg wet	1.00	322		91	77.2-110. 3		
Reference (2001784-SRM2)					Pre	epared: 22-S	Sep-20 A	nalyzed: 23-S	ep-20	
Arsenic	78.1		mg/kg wet	1.50	101		78	70.1-107. 7		
Cadmium	112		mg/kg wet	0.500	144		77	70.2-106. 7		
Chromium	129		mg/kg wet	1.00	150		86	72.3-111.6		
Lead	76.8		mg/kg wet	1.50	89.5		86	73-116.9		
Selenium	32.6		mg/kg wet	1.50	43.7		75	74.1-112. 2		
Silver	32.3		mg/kg wet	3.00	39.7		81	69.3-117. 3		
Barium	268		mg/kg wet	1.00	310		86	77.2-110. 3		
SW846 7471B										
Batch 2001785 - EPA200/SW7000 Series										
Blank (2001785-BLK1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 29-S	ep-20	
Mercury	< 0.0297		mg/kg wet	0.0297						
Reference (2001785-SRM1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 29-S	ep-20	
Mercury	6.22	D	mg/kg wet	0.600	8.81		71	42.1-100		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
7 Harry te(3)	Result	Tiag Cints	RDL	Level	Result	70KEC	Lillito	КГБ	Lillit
SW846 9012 ReactiveCN									
Batch 551420 - 7.3.3									
<u>Duplicate (1754602X)</u>		Source: S	Pre	Sep-20					
Cyanide, Reactive	< 10	mg/kg	10		BRL		-	NC	20
Blank (5514201AB)				Pre	pared: 27-S	ep-20 An	alyzed: 28-S	Sep-20	
Cyanide, Reactive	< 10	mg/kg	10				-		
LCS (5514202AQ)				<u>Pre</u>	pared: 27-S	ep-20 An	alyzed: 28-S	Sep-20	
Cyanide, Reactive	304	mg/kg	200	1000		30	10-100		
SW846 9034 Reactive									
Batch 551421 - 7.3.4									
<u>Duplicate (1754602X)</u>		Source: S	C59391-02	<u>Pre</u>	pared: 27-S	ep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	< 10	mg/kg	10		BRL		-	NC	20
Blank (5514211AB)				Pre	epared: 27-S	ep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	< 10	mg/kg	10				-		
LCS (5514212AQ)				<u>Pre</u>	pared: 27-S	ep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	741	mg/kg	10	960		77	10-100		

Notes and Definitions

BsH	Data for this analyte may be biased high based on QC spike recoveries.
D	Data reported from a dilution
IS1	Internal standard out due to matrix interference
QC6	Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QR4	Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results
QR9	RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.
R01	The Reporting Limit has been raised to account for matrix interference.
S02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

SGCMSVOCSurrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

Sample results reported on a dry weight basis dry

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

This laboratory report is not valid without an authorized signature on the cover page.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Special Handling: **eurofins** Standard TAT - 7 to 10 business days **Environment Testing** CHAIN OF CUSTODY RECORD Rush TAT - Date Needed: **New England** All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed. Project No: Site Name: Telephone #: Project Mgr: P.O No.: Quote #: F=Field Filtered 5=NaOH 6=Ascorbic Acid List Preservative Code below: QA/QC Reporting Notes: 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ 11= \Ce * additional charges may appply Containers DW=Drinking Water GW=Groundwater Analysis SW=Surface Water WW=Waste Water MA DEP MCP CAM Report? CT DPH RCP Report? O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air Standard SG=Soil Gas ☐ No QC DQA* # of VOA Vials ASP A* ASP B* 826 976 NJ Reduced* of Plastic G= Grab C=Compsite Tier II* Tier IV* Other: Time: Lab ID: Sample ID: Date: State-specific reporting standards 50 0910 1009 Temp °C EDD format: Relinquished by: Received by: Date: Time: COLON, CALLAJIAN EASTUM KON E-mail to:

Intact

Broken

Soil Jar Frozen

Present

DI VOA Frozen

Custody Seals:

Refrigerated

Condition upon receipt:

Ambient Iced

IR ID#

Refrigerated 9 Soil Jar Frozen DI VOA Frozen Ambient Iced KID# Present Custody Seals: Condition upon receipt: 0/2 + ссеной Растог :ot lism-H EDD format; Relindaished by: Temp oC :amij. Date: Received by: 1216 80 851 040 90-0111 hills 10 6001 50 0160 0012 0580 08/8/6 10-1484575 State-specific reporting standards: Check if chlorinated of Amber Glass Time: Date: Sample ID: Lab ID: of VOA Vials of Clear Glass Other: *VI 19IT C=Compsite C= Cusp *IIna CN N) Reduced* 8 *8 4SA *A q2A OB =IX =£X =7X DQA** No QC Standard SL=Sludge SG=Soil Gas A=Indoor/Ambient Air lioS=OS IiO=O CT DPH RCP Report? DW=Drinking Water MA DEP MCP CAM Report? WW=Waste Water SW=Surface Water GW=Groundwater **sisylanA** Containers 11 b * additional charges may appply 77 =II 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ QA/QC Reporting Notes: List Preservative Code below: 6=Ascorbic Acid HOBN=2 ENH= 3=HZO 7=HCI I=Na2S2O3 F=Field Filtered P.O No.: Quote #: Project Mgr: Sampler(s): Telephone #: Site Name: dudu Project No: Invoice To: Report To: Samples disposed after 30 days unless otherwise instructed. Min. 24-hr notification needed for rushes All TATs subject to laboratory approval New England Rush TAT - Date Needed: CHYIN OF CUSTODY RECORD **Environment Testing** Standard TAT - 7 to 10 business days sniforus 💸 Special Handling:

W7 16865 25

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC59391-01	TrenchA_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-02	TrenchB_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-03	TrenchD_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-04	TrenchC_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-05	HDDB_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-06	HDDA_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-07	HDDC_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-08	Trip Blank	Volatile Organic Compounds by SW846 8260	9/28/2020

Batch Summary

SC59391-07 (HDDC 5-10) 2001784 Total Metals by EPA 6000/7000 Series Methods 2001800 2001784-BLK1 Semivolatile Organic Compounds by GCMS 2001784-BS1 2001800-BLK1 2001784-BSD1 2001800-BS1 2001784-DUP1 2001800-BSD1 2001784-MS1 2001800-DUP1 2001784-MSD1 SC59391-01 (TrenchA_0-6) 2001784-PS1 SC59391-02 (TrenchB 0-6) 2001784-SRM1 SC59391-03 (TrenchD 0-6) 2001784-SRM2 SC59391-04 (TrenchC 0-6) SC59391-01 (TrenchA 0-6) SC59391-05 (HDDB 5-10) SC59391-02 (TrenchB 0-6) SC59391-06 (HDDA 5-10) SC59391-03 (TrenchD 0-6) SC59391-07 (HDDC 5-10) SC59391-04 (TrenchC 0-6) SC59391-05 (HDDB 5-10) 2001812 SC59391-06 (HDDA_5-10) **Volatile Organic Compounds** SC59391-07 (HDDC_5-10) 2001812-BLK1 2001785 2001812-BS1 Total Metals by EPA 6000/7000 Series Methods 2001812-BSD1 SC59391-01 (TrenchA 0-6) 2001785-BLK1 SC59391-02 (TrenchB 0-6) 2001785-SRM1 SC59391-03 (TrenchD 0-6) SC59391-01 (TrenchA_0-6) SC59391-04 (TrenchC 0-6) SC59391-02 (TrenchB 0-6) SC59391-05 (HDDB 5-10) SC59391-03 (TrenchD 0-6) SC59391-06 (HDDA 5-10) SC59391-04 (TrenchC 0-6) SC59391-07 (HDDC 5-10) SC59391-05 (HDDB 5-10) SC59391-08 (Trip Blank) SC59391-06 (HDDA 5-10) SC59391-07 (HDDC 5-10) 2001826 2001790 **Volatile Organic Compounds General Chemistry Parameters** 2001826-BLK1 2001826-BS1 SC59391-01 (TrenchA 0-6) 2001826-BSD1 SC59391-02 (TrenchB 0-6) 2001826-MRL1 SC59391-03 (TrenchD 0-6) SC59391-01 (TrenchA 0-6) SC59391-04 (TrenchC 0-6) SC59391-03 (TrenchD 0-6) SC59391-05 (HDDB 5-10) SC59391-04 (TrenchC 0-6) SC59391-06 (HDDA 5-10) SC59391-07 (HDDC_5-10) SC59391-05 (HDDB 5-10) SC59391-06 (HDDA 5-10) 2001798 SC59391-07 (HDDC 5-10) SC59391-08 (Trip Blank) Extractable Petroleum Hydrocarbons 2001798-BLK1 2001880 2001798-BS1 **Volatile Organic Compounds** 2001798-BSD1 2001880-BLK1 SC59391-01 (TrenchA 0-6) 2001880-BS1 SC59391-02 (TrenchB 0-6) 2001880-BSD1 SC59391-03 (TrenchD 0-6) 2001880-MRL1 SC59391-04 (TrenchC 0-6) SC59391-02 (TrenchB 0-6) SC59391-05 (HDDB 5-10)

SC59391-06 (HDDA 5-10)

551420

Subcontracted Analyses

1754602X

5514201AB

5514202AQ

SC59391-01 (TrenchA_0-6)

SC59391-02 (TrenchB_0-6)

SC59391-03 (TrenchD_0-6)

SC59391-04 (TrenchC 0-6)

SC59391-05 (HDDB 5-10)

SC59391-06 (HDDA_5-10)

SC59391-07 (HDDC_5-10)

<u>551421</u>

Subcontracted Analyses

1754602X

5514211AB

5514212AQ

SC59391-01 (TrenchA_0-6)

SC59391-02 (TrenchB_0-6)

SC59391-03 (TrenchD 0-6)

SC59391-04 (TrenchC_0-6)

SC59391-05 (HDDB_5-10)

SC59391-06 (HDDA_5-10)

SC59391-07 (HDDC_5-10)

Appendix B Laboratory Report - Drilling Mud Characterization

V	Final Report
	Revised Report

Report Date: 24-Dec-20 15:22

Laboratory Report SC60301

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Unitil - Rochester, NH Project #: Unitil - HDD

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Jersey DEP - NELAP # RI008 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 51 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC60301

Project: Unitil - Rochester, NH

Project Number: Unitil - HDD

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC60301-01	HDD-01-S	Sludge	18-Dec-20 12:52	22-Dec-20 17:50
SC60301-02	HDD-01-M	Sludge	18-Dec-20 13:37	22-Dec-20 17:50
SC60301-03	HDD-02-ME	Sludge	21-Dec-20 11:00	22-Dec-20 17:50

This laboratory report is not valid without an authorized signature on the cover page.

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 1311/6010C

Blanks:

2002969-BLK1

The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.

Silver

Duplicates:

2002969-DUP1 Source: SC60301-03

SW846 1311/6010C

Duplicates:

2002969-DUP1 Source: SC60301-03

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Arsenic

Selenium

MRL raised to correlate to batch QC reporting limits.

Chromium

Samples:

SC60301-02

HDD-01-M

MRL raised to correlate to batch QC reporting limits.

Chromium

SC60301-03

HDD-02-ME

MRL raised to correlate to batch QC reporting limits.

Chromium

SW846 1311/7470A

Duplicates:

2002970-DUP1

Source: SC60301-03

The Reporting Limit has been raised to account for matrix interference.

Mercury

Samples:

SC60301-02

HDD-01-M

The Reporting Limit has been raised to account for matrix interference.

Mercury

SC60301-03

HDD-02-ME

The Reporting Limit has been raised to account for matrix interference.

Mercury

SW846 1311/8260C

Blanks:

2002976-BLK2

The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.

Chlorobenzene

Laboratory Control Samples:

2002976-BS1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

Chlorobenzene

SW846 1311/8260C

Laboratory Control Samples:

2002976-BSD1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

Chlorobenzene

SW846 6010C

Laboratory Control Samples:

2002965 SRM/SRMD

Arsenic percent recoveries (83/78) are outside individual acceptance criteria (82.7-117.9), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

Barium percent recoveries (86/82) are outside individual acceptance criteria (82.6-117.4), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

Selenium percent recoveries (77/70) are outside individual acceptance criteria (79.1-120.9), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

Silver percent recoveries (139/153) are outside individual acceptance criteria (80.6-119.8), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

HDD-01-S

Duplicates:

2002965-DUP1 Source: SC60301-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Arsenic

SW846 8270D

Laboratory Control Samples:

2002981 BS/BSD

2,4-Dinitrophenol percent recoveries (25/32) are outside individual acceptance criteria (30-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

Aniline percent recoveries (32/35) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

Benzoic acid percent recoveries (15/17) are outside individual acceptance criteria (30-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDD-01-S

2002981-BS1

SW846 8270D

Laboratory Control Samples:

2002981-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

2,4-Dinitrophenol

Aniline

Benzoic acid

2002981-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Aniline

Benzoic acid

SW846 9045D

Samples:

SC60301-02 *HDD-01-M*

This sample was received outside the EPA recommended holding time for the analysis specified.

pΗ

SC60301-03 *HDD-02-ME*

This sample was received outside the EPA recommended holding time for the analysis specified.

pН

24-Dec-20 15:22 Page 6 of 51

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Unitil - Rochester, NH / Unitil - HDD
Work Order:	SC60301

Sample(s) received on: 12/22/2020

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples refrigerated upon transfer to laboratory representative?	✓		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	$\overline{\mathbf{x}}$		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		\checkmark	
Did sample container labels agree with Chain of Custody document?	✓		
Were samples received within method-specific holding times?	✓		

Summary of Hits

Client ID:

HDD-01-S

Lab ID: SC60301-01

Eab ID.			Chem ID: 1122 01		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Total Solids @ 104C	19.4		0.1	%	SM2540B-11
Barium	51.5		6.53	mg/kg	SW846 6010C
Chromium	12.8		6.53	mg/kg	SW846 6010C
Lead	26.0		9.80	mg/kg	SW846 6010C
Sulfur	735		163	mg/kg	SW846 6010C
Total Petroleum Hydrocarbons	865		76.8	mg/kg	SW846 8100Mod.
1,2,4-Trimethylbenzene	1600	D	736	μg/kg	SW846 8260C
Ethylbenzene	2550	D	736	μg/kg	SW846 8260C
Naphthalene	106000	E, D	736	μg/kg	SW846 8260C
1-Methylnaphthalene	9030		398	μg/kg	SW846 8270D
2-Methylnaphthalene	13700		398	μg/kg	SW846 8270D
Acenaphthene	1440		398	μg/kg	SW846 8270D
Acenaphthylene	7840		398	μg/kg	SW846 8270D
Anthracene	4500		398	μg/kg	SW846 8270D
Benzo (a) anthracene	3170		398	μg/kg	SW846 8270D
Benzo (a) pyrene	3170		398	μg/kg	SW846 8270D
Benzo (b) fluoranthene	1750		398	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	1410		398	μg/kg	SW846 8270D
Benzo (k) fluoranthene	1350		398	μg/kg	SW846 8270D
Chrysene	2820		398	μg/kg	SW846 8270D
Fluoranthene	5190		398	μg/kg	SW846 8270D
Fluorene	4790		398	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	1150		398	μg/kg	SW846 8270D
Naphthalene	23800	D	1990	μg/kg	SW846 8270D
Phenanthrene	12900		398	μg/kg	SW846 8270D
Pyrene	5540		398	μg/kg	SW846 8270D
Lab ID: SC60301-01RE1			Client ID: HDD-01	I-S	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
1,2,4-Trimethylbenzene	1470	D	1470	μg/kg	SW846 8260C
Ethylbenzene	2560	D	1470	μg/kg	SW846 8260C
Naphthalene	101000	D	1470	μg/kg	SW846 8260C
Lab ID: SC60301-02			Client ID: HDD-01	l-M	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Total Solids @ 104C	18.0		0.1	%	SM2540B-11
Barium	0.183		0.100	mg/l	SW846 1311/6010C
			* *	-6	

24-Dec-20 15:22 Page 8 of 51

Lab ID: SC60301-03 Client ID: HDD-02-ME

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Total Solids @ 104C	58.0		0.1	%	SM2540B-11
Barium	0.192		0.100	mg/l	SW846 1311/6010C
Chromium	0.0397	R06	0.0200	mg/l	SW846 1311/6010C
Lead	0.0654		0.0150	mg/l	SW846 1311/6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

24-Dec-20 15:22 Page 9 of 51

Client Project #
Unitil - HDD

Matrix Sludge Collection Date/Time 18-Dec-20 12:52 Received 22-Dec-20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5035A						ial weight:	_					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 736	D	μg/kg dry	736	404	50	SW846 8260C	23-Dec-20	23-Dec-20	MED	2002975	5 X
67-64-1	Acetone	< 7360	D	μg/kg dry	7360	931	50	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 736	D	μg/kg dry	736	266	50	"	"	"	"	"	X
71-43-2	Benzene	< 736	D	μg/kg dry	736	118	50	"	"	"	"	"	X
108-86-1	Bromobenzene	< 736	D	μg/kg dry	736	166	50	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 736	D	μg/kg dry	736	105	50	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 736	D	μg/kg dry	736	190	50	"	"	"	"	"	Χ
75-25-2	Bromoform	< 736	D	μg/kg dry	736	158	50	"	"	"	"	"	Х
74-83-9	Bromomethane	< 1470	D	μg/kg dry	1470	364	50	"	"	II .	"	"	Χ
78-93-3	2-Butanone (MEK)	< 1470	D	μg/kg dry	1470	336	50	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 736	D	μg/kg dry	736	295	50	"	"	u u	"	"	X
135-98-8	sec-Butylbenzene	< 736	D	μg/kg dry	736	226	50	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 736	D	μg/kg dry	736	300	50	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 1470	D	μg/kg dry	1470	272	50	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 736	D	μg/kg dry	736	220	50	"	"	"	"	"	X
108-90-7	Chlorobenzene	< 736	D	μg/kg dry	736	89.1	50	"	"	"	"	"	X
75-00-3	Chloroethane	< 1470	D	μg/kg dry	1470	328	50	"	"	"	"	"	X
67-66-3	Chloroform	< 736	D	μg/kg dry	736	86.9	50	"	"	"	"		Х
74-87-3	Chloromethane	< 1470	D	μg/kg dry	1470	875	50	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 736	D	μg/kg dry	736	183	50	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 736	D	μg/kg dry	736	133	50	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 1470	D	μg/kg dry	1470	291	50	n	"	"	"	"	X
124-48-1	Dibromochloromethane	< 736	D	μg/kg dry	736	116	50	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 736	D	μg/kg dry	736	200	50	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 736	D	μg/kg dry	736	138	50	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 736	D	μg/kg dry	736	133	50	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 736	D	μg/kg dry	736	183	50	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 736	D	μg/kg dry	736	132	50	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 1470	D	μg/kg dry	1470	963	50	u	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 736	D	μg/kg dry	736	170	50		"	"	"		Х
107-06-2	1,2-Dichloroethane	< 736	D	μg/kg dry	736	193	50		"	"	"		Х
75-35-4	1,1-Dichloroethene	< 736	D	μg/kg dry	736	188	50		"	"	"		Х
156-59-2	cis-1,2-Dichloroethene	< 736	D	μg/kg dry	736	245	50		"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	< 736	D	μg/kg dry	736	168	50	"	"				Х
78-87-5	1,2-Dichloropropane	< 736	D	μg/kg dry	736	256	50	"	"				Х
142-28-9	1,3-Dichloropropane	< 736	D	μg/kg dry	736	233	50	"	"				Х
594-20-7	2,2-Dichloropropane	< 736	D	μg/kg dry	736	194	50	"	"				Х
563-58-6	1,1-Dichloropropene	< 736	D	μg/kg dry	736	225	50	"	"	"		"	X
10061-01-5	cis-1,3-Dichloropropene	< 736	D	μg/kg dry μg/kg dry	736	174	50	"	"		"	"	X
10061-01-5	trans-1,3-Dichloropropene	< 736	D	μg/kg dry μg/kg dry	736	300	50	"	"		"	"	X
100-41-4	Ethylbenzene	2,550	D	μg/kg dry μg/kg dry	736	154	50	w w	"	"	"	"	X
87-68-3	Hexachlorobutadiene	< 736	D	μg/kg dry μg/kg dry	736	236	50	w w	"	"	"	"	X
	i ionaci iloi obulaulei le	~ 100	$\boldsymbol{\nu}$	μg/kg ury	1 30	200	50						^

Client Project #

Matrix

Collection Date/Time

Received

Sample Identification

Prepared by method SW846 5035A Soil (high level)

Initial weight: 9.2 g

24-Dec-20 15:22 Page 11 of 51

348

599

308

471

100

100

100

100

Χ

Χ

Х

Χ

1470

1470

1470

1470

μg/kg dry

μg/kg dry

μg/kg dry

µg/kg dry

10061-01-5

10061-02-6

100-41-4

87-68-3

cis-1,3-Dichloropropene

Hexachlorobutadiene

Ethylbenzene

trans-1,3-Dichloropropene

< 1470

< 1470

2,560

< 1470

D

D

ח

D

Sample Identification

233

1

Χ

997

µg/kg dry

606-20-2

2,6-Dinitrotoluene

< 997

Sample Identification

Prepared by method SW846 3546

24-Dec-20 15:22 Page 15 of 51

HDD-01-	dentification S			Client Pr	roject#		<u>Matrix</u>	<u>Coll</u>	ection Date	/Time	Re	ceived	
SC60301				Unitil -	HDD		Sludge	18	3-Dec-20 12	2:52	22-	Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Extractab	le Petroleum Hydrocarbo	ons											
Fingerprir	nting by GC												
<u>Prepared</u>	by method SW846 3546	<u>6</u>											
	Total Petroleum Hydrocarbons	865		mg/kg dry	76.8	64.2	1	SW846 8100Mod.	23-Dec-20	23-Dec-20	JMS	2002977	,
Surrogate	recoveries:												
84-15-1	o-Terphenyl	48			40-14	10 %		"	u	"	"	"	
3386-33-2	1-Chlorooctadecane	47			40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Seri												
7440-22-4	Silver	< 9.80		mg/kg dry	9.80	1.06	1	SW846 6010C	23-Dec-20	23-Dec-20	EDT	2002965	5 X
7440-38-2	Arsenic	< 9.80		mg/kg dry	9.80	1.24	1	"	u	23-Dec-20	"	"	Х
7440-39-3	Barium	51.5		mg/kg dry	6.53	0.771	1	"	u	"	"	"	Χ
7440-43-9	Cadmium	< 3.27		mg/kg dry	3.27	0.169	1	"	"	"	"	"	Х
7440-47-3	Chromium	12.8		mg/kg dry	6.53	0.869	1	"	u	"	"	"	Х
7439-97-6	Mercury	< 0.157		mg/kg dry	0.157	0.0435	1	SW846 7471B	"	23-Dec-20	edt	2002966	8 X
Prepared	by method SW846 3050	<u>0B</u>											
7439-92-1	Lead	26.0		mg/kg dry	9.80	1.39	1	SW846 6010C	"	23-Dec-20	EDT	2002965	5 X
7782-49-2	Selenium	< 9.80		mg/kg dry	9.80	1.87	1	"	"	"	"	"	Χ
7704-34-9	Sulfur	735		mg/kg dry	163	11.2	1	"	"	23-Dec-20	"	"	
General C	Chemistry Parameters												
	% Solids	16.7		%			1	SM2540 G (11) Mod.	23-Dec-20	23-Dec-20	PN	2002934	ļ
	acted Analyses by method SM2540B-1	<u>1</u>											
Analysis p	erformed by Phoenix Envir	onmental Labs, Inc.	* - CT00	17									
	Total Solids @ 104C	19.4		%	0.1	0.1	1	SM2540B-11	23-Dec-20 21:08	23-Dec-20 21:08	13693-A	1557766A	
Prepared	by method SW846 7.3.3	3.1/90							21.00	21.00			
Analysis pe	erformed by Phoenix Envir	onmental Labs, Inc.	* - CT00	17									
	Reactivity Cyanide	< 25		mg/kg	25	25	1	SW846 7.3.3.1/90	24-Dec-20	24-Dec-20 11:08	13693-A	I557809A	
Analysis p	erformed by Phoenix Envir	onmental Labs, Inc.	* - CT00	17									
	Reactivity Sulfide	< 20		mg/kg	20	20	1	SW846 CH7	"	24-Dec-20 10:30	13693-A	I557809E	}
Prepared	by method SW846-Rea	<u>ct</u>											
Analysis p	erformed by Phoenix Envir	onmental Labs, Inc.	* - CT00	7									
	Reactivity	Negative		Pos/Neg			1	SW846-React	24-Dec-20 10:31	24-Dec-20 10:31	13693-A	['[none]'	

24-Dec-20 15:22 Page 16 of 51

Sample Identification HDD-01-M SC60301-02				Project # - HDD		<u>Matrix</u> Sludge		ection Date B-Dec-20 13			ceived Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
	rganic Compounds												
Prepared	by method SW846 1311/Z TCLP Extraction	.HE Completed		N/A			1	SW846 1311	22-Dec-20		EDT	2002968	
	atile Organic Compounds I	•		IN/A			'	30040 1311	22-Dec-20		LDI	2002900	^
GC/MS(T		<u>by</u>											
Prepared	by method SW846 5030 V	Vater MS				<u>Init</u>	tial weight: 5	<u>5 ml</u>					
71-43-2	Benzene	< 10.0	D	μg/l	10.0	2.5	10	SW846 1311/8260C	23-Dec-20	23-Dec-20	MED	2002976	
78-93-3	2-Butanone (MEK)	< 20.0	D	μg/l	20.0	5.8	10	"	"	"	"	"	
56-23-5	Carbon tetrachloride	< 10.0	D	μg/l	10.0	2.5	10	"	"	"	"	"	
108-90-7	Chlorobenzene	< 10.0	D	μg/l	10.0	4.2	10	"	"	"	"	"	
67-66-3	Chloroform	< 10.0	D	μg/l	10.0	3.0	10	"	"	"	"	"	
107-06-2	1,2-Dichloroethane	< 10.0	D	μg/l	10.0	2.6	10	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 10.0	D	μg/l	10.0	3.4	10	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 10.0	D	μg/l	10.0	3.6	10	"	"	"	"	"	
79-01-6	Trichloroethene	< 10.0	D	μg/l	10.0	3.6	10	"	"	"	"	"	
75-01-4	Vinyl chloride	< 10.0	D	μg/l	10.0	2.6	10	"	u	11	"	"	
_	recoveries:												
460-00-4	4-Bromofluorobenzene	89			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	104			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	"	"	"	"	
	traction for Semivolatiles by method SW846 1311 TCLP Extraction	Completed		N/A			1	SW846 1311	22-Dec-20		EDT	2002967	×
	Final pH of leachate	5.03		N/A			1	"	"	"	"	"	
	mivolatiles (TCL) by method SW846 3510C												
106-46-7	1,4-Dichlorobenzene	< 50.0		µg/l	50.0	13.8	1	SW846 1311/8270D	23-Dec-20	23-Dec-20	BJJ	2002978	X
121-14-2	2,4-Dinitrotoluene	< 50.0		μg/l	50.0	7.19	1	II .	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 50.0		μg/l	50.0	6.65	1	11	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 50.0		μg/l	50.0	12.4	1	II .	"	u u	"	"	Х
67-72-1	Hexachloroethane	< 50.0		μg/l	50.0	14.4	1	"	"	"	"	"	Х
95-48-7	2-Methylphenol	< 50.0		μg/l	50.0	9.93	1	"	"	"	"		Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 100		μg/l	100	10.9	1	u	u u	n .	"	"	X
98-95-3	Nitrobenzene	< 50.0		μg/l	50.0	11.2	1	"	"	u u	"	"	Χ
87-86-5	Pentachlorophenol	< 200		μg/l	200	6.47	1	"	"	u u	"	"	Χ
110-86-1	Pyridine	< 50.0		μg/l	50.0	22.4	1	II .	"	u u	"	"	Х
95-95-4	2,4,5-Trichlorophenol	< 50.0		μg/l	50.0	7.59	1	"	"	u u	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	< 50.0		μg/l	50.0	7.45	1	"	"	"	"	"	X
	recoveries:												
Surrogate		73			30-13	0 %		"	"	"	"	"	
	2-Fluorobiphenyl	70											
321-60-8	2-Fluorobiphenyl 2-Fluorophenol	58			15-11	0 %		"	"	"	"	"	
Surrogate 321-60-8 367-12-4 4165-60-0 1718-51-0					15-11 30-13			"		"	"	"	

Sample Identification				Client P	roject#		Matrix	Coll	Collection Date/Time			Received		
HDD-01-				Unitil			Sludge		3-Dec-20 13			Dec-20		
SC60301-	-02						8-							
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolati	ile Organic Compounds by	GC												
	inated Biphenyls by method SW846 35500	:												
12674-11-2	-	< 82.0		μg/kg dry	82.0	59.1	1	SW846 8082A	23-Dec-20	23-Dec-20	JMS	2002980	Х	
11104-28-2	Aroclor-1221	< 82.0		μg/kg dry	82.0	24.2	1	II .	"	"	"	"	Х	
11141-16-5	Aroclor-1232	< 82.0		μg/kg dry	82.0	22.7	1	"	"	"	"	"	Х	
53469-21-9	Aroclor-1242	< 82.0		μg/kg dry	82.0	7.79	1	"		"	"	"	Х	
12672-29-6	Aroclor-1248	< 82.0		μg/kg dry	82.0	25.6	1	"	"	"	"	"	Х	
11097-69-1	Aroclor-1254	< 82.0		μg/kg dry	82.0	63.8	1	"		"	"	"	Х	
11096-82-5	Aroclor-1260	< 82.0		μg/kg dry	82.0	17.6	1		u	"	"	"	Х	
37324-23-5	Aroclor-1262	< 82.0		μg/kg dry	82.0	19.1	1		u	"	"	"	Х	
11100-14-4	Aroclor-1268	< 82.0		μg/kg dry	82.0	17.5	1	"	"	"	"	u	Х	
Surrogate	recoveries:												-	
877-09-8	2,4,5,6-TC-M-Xylene (IS)	40			30-15	50 %		"	"	"	"	"		
877-09-8	2,4,5,6-TC-M-Xylene (IS) [2C]	34			30-15	50 %		u u	II	"	"	"		
2051-24-3	Decachlorobiphenyl (Sr)	66			30-15	50 %		"	"	"	"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	58			30-15	50 %		"	u	"	"	"		
TCLP Me	tals by EPA 1311 & 6000/70	00 Series Meth	ods											
	raction for Hg by method SW846 1311													
	TCLP Extraction	Completed		N/A			1	SW846 1311	22-Dec-20		EDT	2002967	X	
	Final pH of leachate	5.03		N/A			1	II .	"	"	"	"		
TCLP Ext	raction for Metals													
	TCLP Extraction	Completed		N/A			1	"	"	"	"	"	Χ	
	Final pH of leachate	5.03		N/A			1	"	"	"	"	"		
	by method SW846 3010A	-												
7440-22-4	Silver	< 0.0100		mg/l	0.0100	0.0013	1	SW846 1311/6010C		24-Dec-20	edt	2002969		
7440-38-2	Arsenic	< 0.0800		mg/l	0.0800	0.0029	1	"	"	24-Dec-20	"	"	Х	
7440-39-3	Barium	0.183		mg/l	0.100	0.0005	1	"	"	23-Dec-20	"	"	Х	
7440-43-9	Cadmium	< 0.0050		mg/l	0.0050	0.0004	1	"	"	"	"	"	Х	
7440-47-3	Chromium	< 0.0200	R06	mg/l	0.0200	0.0010	1	"	"	24-Dec-20	"	"	Х	
7439-97-6	Mercury	< 0.00070	R01	mg/l	0.00070	0.00010	1	SW846 1311/7470A	"	23-Dec-20	edt	2002970	Х	
Prepared	by method SW846 3010A	<u>.</u>												
7439-92-1	Lead	0.0823		mg/l	0.0150	0.0059	1	SW846 1311/6010C	"	24-Dec-20	edt	2002969	Х	
7782-49-2	Selenium	< 0.0300		mg/l	0.0300	0.0047	1	"	"	23-Dec-20	"	"	Χ	
General C	hemistry Parameters													
	% Solids	18.2		%			1	SM2540 G (11) Mod.	23-Dec-20	23-Dec-20	PN	2002934		
Toxicity C	haracteristics													
	pH	7.01	HT2,pH	pH Units			1	SW846 9045D	22-Dec-20 20:15	22-Dec-20 20:15	PN	2002972	Х	
	acted Analyses by method SM2540B-11								25.10	_50				
	erformed by Phoenix Environ	mental Lahs In	c. * - CT00	7										
muysis pe	Total Solids @ 104C	18.0	0100.	%	0.1	0.1	1	SM2540B-11	23-Dec-20 21:08	23-Dec-20 21:08	13693-A,	I557766A		
Prepared	by method SW846 7.3.3.	<u>1/90</u>							21.00	_1.50				

Sample Identification HDD-01-M SC60301-02			Client Project # Unitil - HDD			Matrix <u>G</u> Sludge		ection Date 3-Dec-20 13		Received 22-Dec-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst Batch	Cert.
	octed Analyses by method SW846 7.3	.3.1/90										
Analysis pe	erformed by Phoenix Envi	ironmental Labs, Inc	c. * - CT007									
	Reactivity Cyanide	< 27		mg/kg	27	27	1	SW846 7.3.3.1/90	24-Dec-20	24-Dec-20 11:11	13693-A,I557809A	
Analysis pe	erformed by Phoenix Envi	ironmental Labs, Ind	c. * - CT007									
	Reactivity Sulfide	< 20		mg/kg	20	20	1	SW846 CH7	"	24-Dec-20 10:30	13693-A,I557809B	
Prepared	by method SW846-Re	<u>act</u>										
Analysis pe	erformed by Phoenix Envi	ironmental Labs, Ind	c. * - CT007									
	Reactivity	Negative		Pos/Neg			1	SW846-React	24-Dec-20 10:31	24-Dec-20 10:31	13693-A,I '[none]'	

24-Dec-20 15:22 Page 19 of 51

SC60301-	dentification ME -03				Project # - HDD		<u>Matrix</u> Sludge		ection Date 1-Dec-20 11			<u>cceived</u> Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds												
<u>Prepared</u>	by method SW846 1311/Z							0141040404	00 5 00				
TOLD ! / !	TCLP Extraction	Completed		N/A			1	SW846 1311	22-Dec-20		EDT	2002968	Х
GC/MS(T	<u>atile Organic Compounds I</u> CL)	<u>by</u>											
	by method SW846 5030 V	Vater MS				<u>Init</u>	ial weight: 5	<u>5 ml</u>					
71-43-2	Benzene	< 10.0	D	μg/l	10.0	2.5	10	SW846 1311/8260C	23-Dec-20	23-Dec-20	MED	2002976	
78-93-3	2-Butanone (MEK)	< 20.0	D	μg/l	20.0	5.8	10	"	"	"	"		
56-23-5	Carbon tetrachloride	< 10.0	D	μg/l	10.0	2.5	10	"	"	"	"	"	
108-90-7	Chlorobenzene	< 10.0	D	μg/l	10.0	4.2	10	"	"	"	"	"	
67-66-3	Chloroform	< 10.0	D	μg/l	10.0	3.0	10	"	"	"	"	"	
107-06-2	1,2-Dichloroethane	< 10.0	D	μg/l	10.0	2.6	10	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 10.0	D	μg/l	10.0	3.4	10	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 10.0	D	μg/l	10.0	3.6	10	"	"	"	"	"	
79-01-6	Trichloroethene	< 10.0	D	μg/l	10.0	3.6	10	u u	u u	u u	"	"	
75-01-4	Vinyl chloride	< 10.0	D	μg/l	10.0	2.6	10	H	n	"	"	"	
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	90			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	104			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-13	0 %		II .	II .	"	"	"	
Semivolati	ile Organic Compounds by (GCMS											
	traction for Semivolatiles by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	22-Dec-20		EDT	2002967	X
	TCLP Extraction Final pH of leachate	Completed 5.02		N/A N/A			1	SW846 1311	22-Dec-20	"	EDT	2002967	Х
	Final pH of leachate mivolatiles (TCL)	5.02											X
	Final pH of leachate	5.02			50.0	13.8				" 23-Dec-20			
Prepared	Final pH of leachate mivolatiles (TCL) by method SW846 3510C	5.02		N/A	50.0 50.0	13.8 7.19	1	" SW846	"	" 23-Dec-20	n	"	
<u>Prepared</u> 106-46-7	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene	5.02 < 50.0		N/A μg/l			1	" SW846 1311/8270D	" 23-Dec-20		" BJJ	2002978	x
Prepared 106-46-7 121-14-2	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene	< 50.0 < 50.0		N/A µg/l µg/l	50.0	7.19	1 1 1	SW846 1311/8270D "	" 23-Dec-20		BJJ	2002978	x x
Prepared 106-46-7 121-14-2 118-74-1	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene	< 50.0 < 50.0 < 50.0 < 50.0		N/A µg/l µg/l µg/l	50.0 50.0	7.19 6.65	1 1 1 1	SW846 1311/8270D "	" 23-Dec-20	"	BJJ "	2002978	x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene	5.02< 50.0< 50.0< 50.0< 50.0		N/A µg/l µg/l µg/l	50.0 50.0 50.0	7.19 6.65 12.4	1 1 1 1 1	SW846 1311/8270D "	" 23-Dec-20	" "	BJJ " "	2002978	x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0		N/A µg/l µg/l µg/l µg/l	50.0 50.0 50.0 50.0	7.19 6.65 12.4 14.4	1 1 1 1 1	SW846 1311/8270D "	" 23-Dec-20	11 11	BJJ " "	2002978	x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4,	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0		N/A µg/l µg/l µg/l µg/l µg/l µg/l	50.0 50.0 50.0 50.0 50.0	7.19 6.65 12.4 14.4 9.93	1 1 1 1 1 1	SW846 1311/8270D "	" 23-Dec-20		BJJ	2002978	x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol	5.02< 50.0< 50.0< 50.0< 50.0< 50.0< 100		N/A µg/l µg/l µg/l µg/l µg/l µg/l	50.0 50.0 50.0 50.0 50.0	7.19 6.65 12.4 14.4 9.93 10.9	1 1 1 1 1 1 1	SW846 1311/8270D "	" 23-Dec-20		BJJ	2002978	x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 100 < 50.0		N/A	50.0 50.0 50.0 50.0 50.0 100	7.19 6.65 12.4 14.4 9.93 10.9	1 1 1 1 1 1 1	SW846 1311/8270D "	" 23-Dec-20		BJJ	2002978	x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 200		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47	1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " "		BJJ	2002978	x x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5 110-86-1	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 100 < 50.0 < 50.0 < 50.0 < 50.0		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200 50.0	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47 22.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " " "		BJJ	2002978	x x x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5 110-86-1 95-95-4 88-06-2	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200 50.0 50.0	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47 22.4 7.59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " " " "		BJJ	2002978	x x x x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5 110-86-1 95-95-4 88-06-2	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200 50.0 50.0	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47 22.4 7.59 7.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " " " "		BJJ	2002978	x x x x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5 110-86-1 95-95-4 88-06-2 Surrogate	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200 50.0 50.0 50.0	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47 22.4 7.59 7.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " " " "		BJJ	2002978	x x x x x x x x x x
Prepared 106-46-7 121-14-2 118-74-1 87-68-3 67-72-1 95-48-7 108-39-4, 106-44-5 98-95-3 87-86-5 110-86-1 95-95-4 88-06-2 Surrogate in 321-60-8	Final pH of leachate mivolatiles (TCL) by method SW846 3510C 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol recoveries: 2-Fluorobiphenyl	5.02 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 73		N/A	50.0 50.0 50.0 50.0 50.0 100 50.0 200 50.0 50.0 30-13	7.19 6.65 12.4 14.4 9.93 10.9 11.2 6.47 22.4 7.59 7.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 1311/8270D " " " " "	" " " " " " " "	"	BJJ	2002978	x x x x x x x x x x

HDD-02- SC60301-				Client P Unitil			<u>Matrix</u> Sludge		-Dec-20 11			Dec-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolati	ile Organic Compounds by (GC											
	inated Biphenyls												
<u>Prepared</u> 12674-11-2	by method SW846 3550C Aroclor-1016	< 26.3		ua/ka day	26.2	19.0	1	SW846 8082A	22 Doc 20	23-Dec-20	JMS	2002980	X
11104-28-2				µg/kg dry	26.3			30040 0002A	23-Dec-20	23-Dec-20	JIVIO	2002900	
11141-16-5	Aroclor-1221 Aroclor-1232	< 26.3 < 26.3		μg/kg dry μg/kg dry	26.3 26.3	7.78 7.29	1 1	"	"		"	"	X X
53469-21-9	Aroclor-1242	< 26.3		μg/kg dry μg/kg dry	26.3	2.50	1	"	"		,,	"	X
12672-29-6	Aroclor-1248	< 26.3		μg/kg dry	26.3	8.23	1				"	"	X
11097-69-1	Aroclor-1254	< 26.3		μg/kg dry	26.3	20.5	1	"	"	u			X
11096-82-5	Aroclor-1260	< 26.3		μg/kg dry	26.3	5.66	1				"	"	X
37324-23-5	Aroclor-1262	< 26.3		μg/kg dry	26.3	6.13	1				"	"	X
11100-14-4	Aroclor-1268	< 26.3		μg/kg dry	26.3	5.61	1	"	"		"		X
Surrogate i	recoveries:			,									
877-09-8	2,4,5,6-TC-M-Xylene (IS)	69			30-15	0 %		"	"		"		
877-09-8	2,4,5,6-TC-M-Xylene (IS) [2C]	63			30-15			"	"	"	"	ıı	
2051-24-3	Decachlorobiphenyl (Sr)	74			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	73			30-15	0 %		"	II	"	"	"	
TCLP Met	tals by EPA 1311 & 6000/700	00 Series Meth	ods										
	raction for Hg												
Prepared	by method SW846 1311							0)4/0.40.4044	00.5				,
	TCLP Extraction	Completed		N/A			1	SW846 1311 "	22-Dec-20		EDT "	2002967	X
TOLD 5.4	Final pH of leachate	5.02		N/A			1						
TOLP EXI	raction for Metals	0		NI/A			4				"		V
	TCLP Extraction	Completed 5.02		N/A N/A			1 1				"		Х
Prepared	Final pH of leachate by method SW846 3010A	5.02		IN/A			'						
7440-22-4	Silver	< 0.0100		mg/l	0.0100	0.0013	1	SW846 1311/6010C	23-Dec-20	24-Dec-20	edt	2002969	X
7440-38-2	Arsenic	< 0.0800		mg/l	0.0800	0.0029	1	"	"	24-Dec-20	"		Х
7440-39-3	Barium	0.192		mg/l	0.100	0.0005	1	"	"	23-Dec-20	"	"	Х
7440-43-9	Cadmium	< 0.0050		mg/l	0.0050	0.0004	1	"	"	"	"		Х
7440-47-3	Chromium	0.0397	R06	mg/l	0.0200	0.0010	1	"	"	24-Dec-20	"		Х
7439-97-6	Mercury	< 0.00070	R01	mg/l	0.00070	0.00010	1	SW846 1311/7470A	"	23-Dec-20	edt	2002970	X
Prepared	by method SW846 3010A							1311/14/0A					
7439-92-1	Lead	0.0654		mg/l	0.0150	0.0059	1	SW846 1311/6010C	"	24-Dec-20	edt	2002969	X
7782-49-2	Selenium	< 0.0300		mg/l	0.0300	0.0047	1	"	"	23-Dec-20	"	"	Х
General C	Chemistry Parameters												
	% Solids	56.8		%			1	SM2540 G (11) Mod.	23-Dec-20	23-Dec-20	PN	2002934	
Toxicity C	haracteristics												
	рН	8.42	HT2,pH	pH Units			1	SW846 9045D	22-Dec-20 20:15	22-Dec-20 20:15	PN	2002972	Х
	octed Analyses by method SM2540B-11												
Analysis pe	erformed by Phoenix Environ	mental Labs, In	c. * - CT00	7									
-	Total Solids @ 104C	58.0		%	0.1	0.1	1	SM2540B-11		23-Dec-20	13693-A,	I557766A	ı
	by method SW846 7.3.3.1								21:08	21:08			

Sample Id HDD-02-1 SC60301-				Client P Unitil			<u>Matrix</u> Sludge		ection Date -Dec-20 11		Receiv 22-Dec		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst B	atch (Cert.
	cted Analyses by method SW846 7.3.	3.1/90											
Analysis pe	erformed by Phoenix Envi	ronmental Labs, In	c. * - CT007										
	Reactivity Cyanide	< 8		mg/kg	8	8	1	SW846 7.3.3.1/90	24-Dec-20	24-Dec-20 11:12	13693-A,I557	'809A	
Analysis pe	erformed by Phoenix Envi	ronmental Labs, In	c. * - CT007										
	Reactivity Sulfide	< 20		mg/kg	20	20	1	SW846 CH7	п	24-Dec-20 10:30	13693-A,I557	7809B	
Prepared	by method SW846-Rea	<u>act</u>											
Analysis pe	erformed by Phoenix Envi	ronmental Labs, In	c. * - CT007										
	Reactivity	Negative		Pos/Neg			1	SW846-React	24-Dec-20 10:32	24-Dec-20 10:32	13693-A,i '[n	one]'	

24-Dec-20 15:22 Page 22 of 51

 ${\it This\ laboratory\ report\ is\ not\ valid\ without\ an\ authorized\ signature\ on\ the\ cover\ page}.$

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 1311/8260C										
Batch 2002976 - SW846 5030 Water MS										
Blank (2002976-BLK1)					Pre	epared & A	nalyzed: 23-	Dec-20		
Benzene	< 1.0		μg/l	1.0			•			
2-Butanone (MEK)	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroform	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
Tetrachloroethene	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
· · · · · · · · · · · · · · · · · · ·					50.0			70.400		
Surrogate: 4-Bromofluorobenzene	48.0		μg/l		50.0		96 100	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	50.9		μg/l		50.0		102	70-130		
Blank (2002976-BLK2)					Pre	epared & A	nalyzed: 23-	Dec-20		
Benzene	< 1.0		μg/l	1.0						
2-Butanone (MEK)	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	1.0	QB2	μg/l	1.0						
Chloroform	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
Tetrachloroethene	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	43.3		μg/l		50.0		87	70-130		
Surrogate: Toluene-d8	53.2		μg/l		50.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.7		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	51.4		μg/l		50.0		103	70-130		
LCS (2002976-BS1)					Pre	epared & A	nalyzed: 23-	Dec-20		
Benzene	19.1		μg/l		20.0		96	70-130		
2-Butanone (MEK)	15.0		μg/l		20.0		75	70-130		
Carbon tetrachloride	20.6		μg/l		20.0		103	70-130		
Chlorobenzene	19.2	В	μg/l		20.0		96	70-130		
Chloroform	19.7		μg/l		20.0		98	70-130		
1,2-Dichloroethane	21.4		μg/l		20.0		107	70-130		
1,1-Dichloroethene	20.1		μg/l		20.0		100	70-130		
Tetrachloroethene	19.0		μg/l		20.0		95	70-130		
Trichloroethene	20.3		μg/l		20.0		102	70-130		
Vinyl chloride	19.2		μg/l		20.0		96	70-130		
Surrogate: 4-Bromofluorobenzene	49.6		μg/l "		50.0		99	70-130		
Surrogate: Toluene-d8	50.3		μg/l 		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/l 		50.0		101	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/l		50.0		101	70-130		
LCS Dup (2002976-BSD1)					Pre	epared & A	nalyzed: 23-	Dec-20		
Benzene	19.3		μg/l		20.0		97	70-130	1	20
2-Butanone (MEK)	15.0		μg/l		20.0		75	70-130	0	20
Carbon tetrachloride	20.2		μg/l		20.0		101	70-130	2	20
Chlorobenzene	19.2	В	μg/l		20.0		96	70-130	0.05	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 1311/8260C										
Batch 2002976 - SW846 5030 Water MS										
LCS Dup (2002976-BSD1)					Pre	epared & Ar	nalyzed: 23-	-Dec-20		
Chloroform	19.3		μg/l		20.0		96	70-130	2	20
1,2-Dichloroethane	20.7		μg/l		20.0		103	70-130	4	20
1,1-Dichloroethene	19.8		μg/l		20.0		99	70-130	1	20
Tetrachloroethene	19.1		μg/l		20.0		96	70-130	0.8	20
Trichloroethene	20.0		μg/l		20.0		100	70-130	2	20
Vinyl chloride	20.2		μg/l		20.0		101	70-130	5	20
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3				50.0		103	70-130 70-130		
Surrogate: Dibromofluoromethane	51.5		μg/l μg/l		50.0		103	70-130 70-130		
-	51.5		μg/i		50.0		103	70-130		
SW846 8260C										
Black (2002975 - SW846 5035A Soil (high level)					D-	opared 9 A	anlyzed: 00	Dec 20		
Blank (2002975-BLK1)	< 50.0	D	ua/ka wat	E0.0	<u> </u>	epareu & Al	nalyzed: 23-	- <u>D60-20</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	< 50.0 < 500	D	µg/kg wet	50.0 500						
		D	μg/kg wet							
Acrylonitrile Benzene	< 50.0 < 50.0	D	μg/kg wet	50.0 50.0						
			μg/kg wet							
Bromobenzene	< 50.0	D	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D D	μg/kg wet	50.0						
Chlorophare	< 50.0		μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloromothono	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane 1,2-Dibromoethane (EDB)	< 50.0	D D	μg/kg wet	50.0						
	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0 < 50.0	D	µg/kg wet	50.0 50.0						
1,4-Dichlorobenzene		D	µg/kg wet							
Dichlorodifluoromethane (Freon12)	< 100 < 50.0	D	µg/kg wet	100 50.0						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	µg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0		µg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane 2,2-Dichloropropane	< 50.0 < 50.0	D D	μg/kg wet μg/kg wet	50.0 50.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002975 - SW846 5035A Soil (high level)										
Blank (2002975-BLK1)					Pre	epared & Ai	nalyzed: 23-	Dec-20		
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 100	D	μg/kg wet	100						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 100	D	μg/kg wet	100						
Methylene chloride	< 100	D	μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D		50.0						
1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Vinyl chloride	< 50.0	D	μg/kg wet μg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet μg/kg wet	100						
	< 50.0	D	μg/kg wet							
o-Xylene	< 100	D		50.0 100						
Tetrahydrofuran Ethyl ether	< 50.0	D	μg/kg wet	50.0						
•			μg/kg wet							
Tert-amyl methyl ether	< 50.0	D D	µg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0 < 50.0	D	µg/kg wet	50.0						
Di-isopropyl ether		D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol 1,4-Dioxane	< 1000 < 1000	D	μg/kg wet μg/kg wet	1000 1000						
,	< 1000 < 250	D								
trans-1,4-Dichloro-2-butene		D	μg/kg wet	250						
Ethanol	< 10000	U	μg/kg wet	10000						
Surrogate: 4-Bromofluorobenzene	47.9		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	50.9		μg/l "		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.5		μg/l		50.0		107	70-130		
Surrogate: Dibromofluoromethane	50.3		μg/l		50.0		101	70-130		
LCS (2002975-BS1)						epared & A	nalyzed: 23-	Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.0	D	μg/l		20.0		105	70-130		
Acetone	15.7	D	μg/l		20.0		78	70-130		
Acrylonitrile	21.5	D	μg/l		20.0		108	70-130		
Benzene	18.7	D	μg/l		20.0		94	70-130		
Bromobenzene	17.3	D	μg/l		20.0		87	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Batch 2002975 - SW846 5035A Soil (high level)										
LCS (2002975-BS1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Bromochloromethane	19.2	D	μg/l		20.0	,	96	70-130		
Bromodichloromethane	20.6	D	μg/l		20.0		103	70-130		
Bromoform	19.3	D	μg/l		20.0		96	70-130		
Bromomethane	17.5	D	μg/l		20.0		88	70-130		
2-Butanone (MEK)	14.2	D	μg/l		20.0		71	70-130		
n-Butylbenzene	21.3	D	μg/l		20.0		106	70-130		
sec-Butylbenzene	17.6	D	μg/l		20.0		88	70-130		
tert-Butylbenzene	16.8	D	μg/l		20.0		84	70-130		
Carbon disulfide		D			20.0		89	70-130		
	17.7	D	μg/l							
Carbon tetrachloride	19.1		μg/l		20.0		96	70-130		
Chlorobenzene	18.4	D	μg/l 		20.0		92	70-130		
Chloroethane	15.8	D	μg/l		20.0		79	70-130		
Chloroform	18.7	D	μg/l		20.0		94	70-130		
Chloromethane	17.6	D	µg/l		20.0		88	70-130		
2-Chlorotoluene	18.7	D	µg/l		20.0		94	70-130		
4-Chlorotoluene	19.5	D	µg/l		20.0		98	70-130		
1,2-Dibromo-3-chloropropane	18.6	D	μg/l		20.0		93	70-130		
Dibromochloromethane	18.5	D	μg/l		20.0		93	70-130		
1,2-Dibromoethane (EDB)	18.7	D	μg/l		20.0		94	70-130		
Dibromomethane	20.0	D	μg/l		20.0		100	70-130		
1,2-Dichlorobenzene	18.5	D	μg/l		20.0		93	70-130		
1,3-Dichlorobenzene	18.7	D	μg/l		20.0		94	70-130		
1,4-Dichlorobenzene	17.8	D	μg/l		20.0		89	70-130		
Dichlorodifluoromethane (Freon12)	17.0	D	μg/l		20.0		85	70-130		
1,1-Dichloroethane	19.6	D	μg/l		20.0		98	70-130		
1,2-Dichloroethane	19.7	D	μg/l		20.0		99	70-130		
1,1-Dichloroethene	18.9	D	μg/l		20.0		94	70-130		
cis-1,2-Dichloroethene	18.4	D	μg/l		20.0		92	70-130		
trans-1,2-Dichloroethene	18.8	D	μg/l		20.0		94	70-130		
1,2-Dichloropropane	19.1	D	μg/l		20.0		96	70-130		
1,3-Dichloropropane	18.5	D	μg/l		20.0		92	70-130		
2,2-Dichloropropane	21.0	D	μg/l		20.0		105	70-130		
1,1-Dichloropropene	18.8	D	μg/l		20.0		94	70-130		
cis-1,3-Dichloropropene	16.6	D	μg/l		20.0		83	70-130		
trans-1,3-Dichloropropene	18.8	D	μg/l		20.0		94	70-130		
Ethylbenzene	19.0	D	μg/l		20.0		95	70-130		
Hexachlorobutadiene	17.6	D			20.0		88	70-130		
		D	μg/l		20.0		75	70-130		
2-Hexanone (MBK)	14.9	D	μg/l							
Isopropylbenzene	18.7		μg/l		20.0		93	70-130		
4-Isopropyltoluene	16.8	D	μg/l		20.0		84	70-130		
Methyl tert-butyl ether	17.3	D	μg/l		20.0		87	70-130		
4-Methyl-2-pentanone (MIBK)	17.2	D	μg/l		20.0		86	70-130		
Methylene chloride	18.2	D	μg/l "		20.0		91	70-130		
Naphthalene	15.7	D	μg/l "		20.0		79	70-130		
n-Propylbenzene	19.3	D	μg/l		20.0		97	70-130		
Styrene	18.4	D	μg/l		20.0		92	70-130		
1,1,1,2-Tetrachloroethane	17.9	D	μg/l		20.0		89	70-130		
1,1,2,2-Tetrachloroethane	17.8	D	μg/l		20.0		89	70-130		
Tetrachloroethene	17.9	D	μg/l		20.0		90	70-130		
Toluene	19.3	D	μg/l		20.0		97	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Batch 2002975 - SW846 5035A Soil (high level)										
LCS (2002975-BS1)					Pre	epared & Ai	nalyzed: 23-	Dec-20		
1,2,3-Trichlorobenzene	17.6	D	μg/l		20.0		88	70-130		
1,2,4-Trichlorobenzene	16.7	D	μg/l		20.0		83	70-130		
1,3,5-Trichlorobenzene	17.9	D	μg/l		20.0		90	70-130		
1,1,1-Trichloroethane	20.6	D	μg/l		20.0		103	70-130		
1,1,2-Trichloroethane	19.6	D	μg/l		20.0		98	70-130		
Trichloroethene	19.8	D	μg/l		20.0		99	70-130		
Trichlorofluoromethane (Freon 11)	20.8	D	μg/l		20.0		104	70-130		
1,2,3-Trichloropropane	18.6	D	μg/l		20.0		93	70-130		
1,2,4-Trimethylbenzene	20.1	D	μg/l		20.0		101	70-130		
1,3,5-Trimethylbenzene	20.1	D			20.0		101	70-130		
Vinyl chloride	19.0	D	μg/l		20.0		95	70-130		
•		D	μg/l							
m,p-Xylene	41.0		μg/l		40.0		102	70-130		
o-Xylene	18.3	D	μg/l		20.0		92	70-130		
Tetrahydrofuran	17.2	D	μg/l		20.0		86	70-130		
Ethyl ether	18.9	D	μg/l		20.0		94	70-130		
Tert-amyl methyl ether	19.5	D	μg/l		20.0		97	70-130		
Ethyl tert-butyl ether	19.0	D	μg/l		20.0		95	70-130		
Di-isopropyl ether	19.3	D	μg/l		20.0		97	70-130		
Tert-Butanol / butyl alcohol	195	D	μg/l		200		97	70-130		
1,4-Dioxane	177	D	μg/l		200		89	70-130		
trans-1,4-Dichloro-2-butene	19.4	D	μg/l		20.0		97	70-130		
Ethanol	389	D	μg/l		400		97	70-130		
Surrogate: 4-Bromofluorobenzene	49.5		μg/l		50.0		99	70-130		
Surrogate: Toluene-d8	50.7		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	50.7		μg/l		50.0		101	70-130		
LCS Dup (2002975-BSD1)					Pre	epared & Ai	nalyzed: 23-	Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.3	D	μg/l		20.0	•	101	70-130	4	30
Acetone	15.2	D	μg/l		20.0		76	70-130	3	30
Acrylonitrile	20.8	D	μg/l		20.0		104	70-130	3	30
Benzene	18.3	D	μg/l		20.0		92	70-130	2	30
Bromobenzene	18.5	D	μg/l		20.0		93	70-130	7	30
Bromochloromethane	19.2	D			20.0		96	70-130	0.4	30
Bromodichloromethane		D	μg/l				98			30
	19.6	D	μg/l		20.0			70-130	5	
Bromoform	19.4		μg/l		20.0		97	70-130	0.6	30
Bromomethane	19.0	D	μg/l 		20.0		95	70-130	8	30
2-Butanone (MEK)	14.2	D	μg/l 		20.0		71	70-130	0.07	30
n-Butylbenzene	20.9	D	μg/l		20.0		105	70-130	2	30
sec-Butylbenzene	17.6	D	μg/l		20.0		88	70-130	0.06	30
tert-Butylbenzene	16.7	D	μg/l		20.0		84	70-130	0.5	30
Carbon disulfide	17.4	D	μg/l		20.0		87	70-130	2	30
Carbon tetrachloride	18.8	D	μg/l		20.0		94	70-130	2	30
Chlorobenzene	18.4	D	μg/l		20.0		92	70-130	0.05	30
Chloroethane	20.4	D	μg/l		20.0		102	70-130	25	30
Chloroform	18.6	D	μg/l		20.0		93	70-130	0.4	30
Chloromethane	17.3	D	μg/l		20.0		87	70-130	1	30
2-Chlorotoluene	18.7	D	μg/l		20.0		94	70-130	0	30
4-Chlorotoluene	19.0	D	μg/l		20.0		95	70-130	2	30
1,2-Dibromo-3-chloropropane	19.5	D	μg/l		20.0		97	70-130	5	30
Dibromochloromethane	18.7	D	μg/l		20.0		94	70-130	1	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002975 - SW846 5035A Soil (high level)										
LCS Dup (2002975-BSD1)					Pre	epared & Ar	nalyzed: 23	-Dec-20		
1,2-Dibromoethane (EDB)	19.0	D	μg/l		20.0		95	70-130	2	30
Dibromomethane	19.6	D	μg/l		20.0		98	70-130	2	30
1,2-Dichlorobenzene	18.2	D	μg/l		20.0		91	70-130	2	30
1,3-Dichlorobenzene	18.7	D	μg/l		20.0		94	70-130	0	30
1,4-Dichlorobenzene	17.8	D	μg/l		20.0		89	70-130	0.2	30
Dichlorodifluoromethane (Freon12)	17.4	D	μg/l		20.0		87	70-130	2	30
1,1-Dichloroethane	19.1	D	μg/l		20.0		96	70-130	3	30
1,2-Dichloroethane	19.5	D	μg/l		20.0		97	70-130	1	30
1,1-Dichloroethene	18.7	D	μg/l		20.0		94	70-130	0.7	30
cis-1,2-Dichloroethene	18.6	D	μg/l		20.0		93	70-130	1	30
trans-1,2-Dichloroethene	18.7	D	μg/l		20.0		93	70-130	0.8	30
1,2-Dichloropropane	19.5	D	μg/l		20.0		98	70-130	2	30
1,3-Dichloropropane	19.2	D	μg/l		20.0		96	70-130	4	30
2,2-Dichloropropane	20.3	D	μg/l		20.0		102	70-130	4	30
1,1-Dichloropropene	18.8	D	μg/l		20.0		94	70-130	0.2	30
cis-1,3-Dichloropropene	16.4	D	μg/l		20.0		82	70-130	0.9	30
trans-1,3-Dichloropropene	18.8	D	μg/l		20.0		94	70-130	0.2	30
Ethylbenzene	17.9	D	μg/l		20.0		90	70-130	6	30
Hexachlorobutadiene	16.6	D	μg/l		20.0		83	70-130	6	30
2-Hexanone (MBK)	15.6	D	μg/l		20.0		78	70-130	5	30
Isopropylbenzene	19.0	D	μg/l		20.0		95	70-130	2	30
4-Isopropyltoluene	16.4	D	μg/l		20.0		82	70-130	2	30
Methyl tert-butyl ether	18.2	D	μg/l		20.0		91	70-130	5	30
4-Methyl-2-pentanone (MIBK)	18.6	D	μg/l		20.0		93	70-130	8	30
Methylene chloride	18.2	D	μg/l		20.0		91	70-130	0	30
Naphthalene	17.0	D	μg/l		20.0		85	70-130	8	30
n-Propylbenzene	19.4	D	μg/l		20.0		97	70-130	0.7	30
Styrene	18.5	D	μg/l		20.0		93	70-130	0.7	30
1,1,1,2-Tetrachloroethane	17.9	D			20.0		90	70-130	0.3	30
1,1,2,1-Tetrachloroethane	17.6	D	μg/l μg/l		20.0		88	70-130	1	30
Tetrachloroethene	18.0	D			20.0		90	70-130	0.5	30
Toluene	19.3	D	μg/l		20.0		90	70-130	0.5	30
1,2,3-Trichlorobenzene	19.3	D	μg/l		20.0		97 86	70-130	2	30
1,2,4-Trichlorobenzene		D	μg/l		20.0		82	70-130	2	30
, ,	16.4	D	μg/l							
1,3,5-Trichlorobenzene	17.4		μg/l		20.0		87	70-130	3	30
1,1,1-Trichloroethane	19.7	D	μg/l		20.0		98	70-130	4	30
1,1,2-Trichloroethane	19.9	D	μg/l		20.0		100	70-130	2	30
Trichloroethene	19.0	D	μg/l "		20.0		95	70-130	5	30
Trichlorofluoromethane (Freon 11)	20.7	D	μg/l 		20.0		104	70-130	0.6	30
1,2,3-Trichloropropane	18.1	D	μg/l "		20.0		91	70-130	3	30
1,2,4-Trimethylbenzene	19.9	D	μg/l		20.0		99	70-130	1	30
1,3,5-Trimethylbenzene	20.2	D	μg/l 		20.0		101	70-130	0.3	30
Vinyl chloride	18.8	D	μg/l 		20.0		94	70-130	1	30
m,p-Xylene	40.4	D	μg/l 		40.0		101	70-130	2	30
o-Xylene	18.4	D -	μg/l		20.0		92	70-130	0.4	30
Tetrahydrofuran	20.2	D	μg/l		20.0		101	70-130	16	30
Ethyl ether	19.5	D	μg/l		20.0		98	70-130	3	30
Tert-amyl methyl ether	20.1	D	μg/l		20.0		100	70-130	3	30
Ethyl tert-butyl ether	19.2	D	μg/l		20.0		96	70-130	8.0	30
Di-isopropyl ether	19.7	D	μg/l		20.0		98	70-130	2	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 2002975 - SW846 5035A Soil (high level)										
LCS Dup (2002975-BSD1)					Pre	enared & Ai	nalyzed: 23-	.Dec-20		
Tert-Butanol / butyl alcohol	198	D	μg/l		200	cparca a 7 i	99	70-130	1	30
1,4-Dioxane	180	D	μg/l		200		90	70-130	2	30
trans-1,4-Dichloro-2-butene	20.9	D	μg/l		20.0		105	70-130	8	30
Ethanol	385	D	μg/l		400		96	70-130	1	30
Surrogate: 4-Bromofluorobenzene	50.5		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.3		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	49.7		μg/l		50.0		99	70-130		
atch 2002995 - SW846 5035A Soil (high level)			m3/·		00.0			70 700		
, ,					Dr	opared & A	nalyzed: 24-	Dec 20		
Blank (2002995-BLK1)	< FO 0	D	ua/ka wat	50.0	<u>F10</u>	epareu & Ar	naiyzeu. 24-	Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	< 50.0 < 500	D D	μg/kg wet μg/kg wet	50.0 500						
Acetone Acrylonitrile	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Benzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Bromobenzene	< 50.0	D	µg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 2002995 - SW846 5035A Soil (high level)										
Blank (2002995-BLK1)					Pre	epared & Ar	nalyzed: 24-	Dec-20		
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 100	D	μg/kg wet	100						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 100	D	μg/kg wet	100						
Methylene chloride	< 100	D	μg/kg wet μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
n-Propylbenzene		D								
• •	< 50.0	D	μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D -	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	µg/kg wet	50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
Vinyl chloride	< 50.0	D	μg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 1000	D	μg/kg wet	1000						
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250	D	μg/kg wet	250						
Ethanol	< 10000	D	μg/kg wet	10000						
Surrogate: 4-Bromofluorobenzene	47.9		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.4		μg/l		50.0		107	70-130		
Surrogate: Dibromofluoromethane	50.4		μg/l		50.0		101	70-130		
LCS (2002995-BS1)						epared & Ar	nalyzed: 24-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.0	D	μg/l		20.0		110	70-130		
Acetone	16.8	D	μg/l		20.0		84	70-130		
Acrylonitrile	22.4	D	μg/l		20.0		112	70-130		
Benzene	19.8	D	μg/l		20.0		99	70-130		
Bromobenzene	18.7	D			20.0		99	70-130		
Bromochloromethane	18.7 21.2	D	μg/l		20.0		9 4 106	70-130 70-130		
Bromodichloromethane	21.2 22.7	D	μg/l μg/l		20.0		113	70-130 70-130		
	///	U	LICI/I		/U U		113	/ U= 1.5U		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002995 - SW846 5035A Soil (high level)										
LCS (2002995-BS1)					Pre	epared & Ai	nalyzed: 24-	Dec-20		
Bromomethane	19.3	D	μg/l		20.0	,	97	70-130		
2-Butanone (MEK)	14.1	D	μg/l		20.0		70	70-130		
n-Butylbenzene	21.8	D	μg/l		20.0		109	70-130		
sec-Butylbenzene	18.5	D	μg/l		20.0		93	70-130		
tert-Butylbenzene	17.6	D	μg/l		20.0		88	70-130		
Carbon disulfide	18.9	D	μg/l		20.0		95	70-130		
Carbon tetrachloride	21.0	D	μg/l		20.0		105	70-130		
Chlorobenzene	19.2	D	μg/l		20.0		96	70-130		
Chloroethane		D			20.0		84	70-130		
	16.9	D	μg/l							
Chloroform	20.1		μg/l		20.0		100	70-130		
Chloromethane	19.1	D	μg/l 		20.0		95	70-130		
2-Chlorotoluene	19.6	D	μg/l		20.0		98	70-130		
4-Chlorotoluene	20.0	D	μg/l 		20.0		100	70-130		
1,2-Dibromo-3-chloropropane	20.2	D	µg/l		20.0		101	70-130		
Dibromochloromethane	20.0	D	μg/l		20.0		100	70-130		
1,2-Dibromoethane (EDB)	20.8	D	µg/l		20.0		104	70-130		
Dibromomethane	22.3	D	μg/l		20.0		111	70-130		
1,2-Dichlorobenzene	19.3	D	μg/l		20.0		96	70-130		
1,3-Dichlorobenzene	19.5	D	μg/l		20.0		97	70-130		
1,4-Dichlorobenzene	18.1	D	μg/l		20.0		91	70-130		
Dichlorodifluoromethane (Freon12)	18.5	D	μg/l		20.0		92	70-130		
1,1-Dichloroethane	21.2	D	μg/l		20.0		106	70-130		
1,2-Dichloroethane	21.3	D	μg/l		20.0		106	70-130		
1,1-Dichloroethene	20.6	D	μg/l		20.0		103	70-130		
cis-1,2-Dichloroethene	20.8	D	μg/l		20.0		104	70-130		
trans-1,2-Dichloroethene	20.2	D	μg/l		20.0		101	70-130		
1,2-Dichloropropane	20.9	D	μg/l		20.0		104	70-130		
1,3-Dichloropropane	20.4	D	μg/l		20.0		102	70-130		
2,2-Dichloropropane	22.1	D	μg/l		20.0		110	70-130		
1,1-Dichloropropene	20.6	D	μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	18.8	D	μg/l		20.0		94	70-130		
trans-1,3-Dichloropropene	20.8	D	μg/l		20.0		104	70-130		
Ethylbenzene	19.6	D	μg/l		20.0		98	70-130		
Hexachlorobutadiene	17.4	D	μg/l		20.0		87	70-130		
2-Hexanone (MBK)	17.4	D	μg/l		20.0		87	70-130		
Isopropylbenzene	19.6	D	μg/l		20.0		98	70-130		
• • • •		D								
4-Isopropyltoluene Methyl tert-butyl ether	17.2	D	μg/l		20.0 20.0		86 98	70-130 70-130		
	19.6	D	μg/l							
4-Methyl-2-pentanone (MIBK)	20.5		μg/l		20.0		102	70-130		
Methylene chloride	20.6	D	μg/l		20.0		103	70-130		
Naphthalene	18.7	D	μg/l		20.0		94	70-130		
n-Propylbenzene	19.8	D	μg/l		20.0		99	70-130		
Styrene	19.0	D	μg/l "		20.0		95	70-130		
1,1,1,2-Tetrachloroethane	19.2	D	μg/l "		20.0		96	70-130		
1,1,2,2-Tetrachloroethane	18.1	D	μg/l		20.0		91	70-130		
Tetrachloroethene	19.4	D	μg/l		20.0		97	70-130		
Toluene	20.5	D	μg/l		20.0		103	70-130		
1,2,3-Trichlorobenzene	18.5	D	μg/l		20.0		92	70-130		
1,2,4-Trichlorobenzene	18.6	D	μg/l		20.0		93	70-130		
1,3,5-Trichlorobenzene	19.1	D	μg/l		20.0		95	70-130		

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2002995 - SW846 5035A Soil (high level)										
LCS (2002995-BS1)					Pre	enared & Ar	nalyzed: 24-	-Dec-20		
1,1,1-Trichloroethane	20.9	D	μg/l		20.0	7 paroa a 7 a	104	70-130		
1,1,2-Trichloroethane	20.6	D	μg/l		20.0		103	70-130		
Trichloroethene	20.4	D	μg/l		20.0		102	70-130		
Trichlorofluoromethane (Freon 11)	22.4	D	μg/l		20.0		112	70-130		
1,2,3-Trichloropropane	18.7	D	μg/l		20.0		94	70-130		
1,2,4-Trimethylbenzene	21.0	D	μg/l		20.0		105	70-130		
1,3,5-Trimethylbenzene	21.1	D	μg/l		20.0		105	70-130		
Vinyl chloride	20.2	D	μg/l		20.0		103	70-130		
•		D			40.0			70-130		
m,p-Xylene	42.4	D	μg/l				106			
o-Xylene	19.9		μg/l		20.0		100	70-130		
Tetrahydrofuran	21.6	D	μg/l		20.0		108	70-130		
Ethyl ether	19.8	D	μg/l 		20.0		99	70-130		
Tert-amyl methyl ether	21.9	D -	μg/l		20.0		109	70-130		
Ethyl tert-butyl ether	21.5	D	μg/l		20.0		108	70-130		
Di-isopropyl ether	21.4	D	μg/l		20.0		107	70-130		
Tert-Butanol / butyl alcohol	220	D	μg/l		200		110	70-130		
1,4-Dioxane	204	D	μg/l		200		102	70-130		
trans-1,4-Dichloro-2-butene	20.9	D	μg/l		20.0		105	70-130		
Ethanol	393	D	μg/l		400		98	70-130		
Surrogate: 4-Bromofluorobenzene	50.5		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.2		μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	52.7		μg/l		50.0		105	70-130		
LCS Dup (2002995-BSD1)			. 0		Pre	enared & Ar	nalyzed: 24-	-Dec-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.2	D	μg/l		20.0		106	70-130	4	30
Acetone	15.2	D	μg/l		20.0		76	70-130	10	30
Acrylonitrile	20.9	D	μg/l		20.0		104	70-130	7	30
Benzene	19.0	D	μg/l		20.0		95	70-130	4	30
Bromobenzene	18.1	D	μg/l		20.0		90	70-130	3	30
Bromochloromethane	20.7	D			20.0		104	70-130	2	30
		D	μg/l						-	
Bromodichloromethane	20.3	D	μg/l		20.0		102	70-130	11	30
Bromoform	20.1		μg/l		20.0		101	70-130	5	30
Bromomethane	18.4	D	μg/l		20.0		92	70-130	5	30
2-Butanone (MEK)	14.1	D	μg/l		20.0		71	70-130	0.2	30
n-Butylbenzene	21.6	D	μg/l		20.0		108	70-130	0.9	30
sec-Butylbenzene	18.2	D	μg/l		20.0		91	70-130	2	30
tert-Butylbenzene	17.8	D	μg/l		20.0		89	70-130	0.9	30
Carbon disulfide	17.5	D -	μg/l		20.0		87	70-130	8	30
Carbon tetrachloride	19.8	D	μg/l		20.0		99	70-130	6	30
Chlorobenzene	18.7	D	μg/l		20.0		94	70-130	3	30
Chloroethane	18.4	D	μg/l		20.0		92	70-130	9	30
Chloroform	19.0	D	μg/l		20.0		95	70-130	6	30
Chloromethane	18.7	D	μg/l		20.0		93	70-130	2	30
2-Chlorotoluene	19.4	D	μg/l		20.0		97	70-130	0.9	30
4-Chlorotoluene	20.2	D	μg/l		20.0		101	70-130	1	30
1,2-Dibromo-3-chloropropane	18.7	D	μg/l		20.0		94	70-130	8	30
Dibromochloromethane	19.2	D	μg/l		20.0		96	70-130	4	30
1,2-Dibromoethane (EDB)	19.6	D	μg/l		20.0		98	70-130	6	30
Dibromomethane	20.3	D	μg/l		20.0		102	70-130	9	30
1,2-Dichlorobenzene	18.0	D	μg/l		20.0		90	70-130	7	30

Volatile Organic Compounds - Quality Control

Analyta(c)	Result	Floo	I Inita	*RDL	Spike	Source Result	%REC	%REC	RPD	RPD
Analyte(s)	Result	Flag	Units	· KDL	Level	Result	/0KEC	Limits	KLD	Limit
SW846 8260C										
Batch 2002995 - SW846 5035A Soil (high level)										
LCS Dup (2002995-BSD1)					Pre	epared & Ar	nalyzed: 24-	Dec-20		
1,3-Dichlorobenzene	19.1	D	μg/l		20.0		96	70-130	2	30
1,4-Dichlorobenzene	17.7	D	μg/l		20.0		89	70-130	2	30
Dichlorodifluoromethane (Freon12)	17.6	D	μg/l		20.0		88	70-130	5	30
1,1-Dichloroethane	19.4	D	μg/l		20.0		97	70-130	9	30
1,2-Dichloroethane	20.2	D	μg/l		20.0		101	70-130	5	30
1,1-Dichloroethene	19.5	D	μg/l		20.0		98	70-130	5	30
cis-1,2-Dichloroethene	19.6	D	μg/l		20.0		98	70-130	6	30
trans-1,2-Dichloroethene	19.3	D -	μg/l		20.0		96	70-130	5	30
1,2-Dichloropropane	20.1	D	μg/l		20.0		101	70-130	4	30
1,3-Dichloropropane	19.2	D	μg/l		20.0		96	70-130	6	30
2,2-Dichloropropane	20.8	D -	μg/l		20.0		104	70-130	6	30
1,1-Dichloropropene	19.3	D	μg/l		20.0		97	70-130	6	30
cis-1,3-Dichloropropene	18.0	D	μg/l		20.0		90	70-130	4	30
trans-1,3-Dichloropropene	19.3	D	μg/l		20.0		97	70-130	8	30
Ethylbenzene	18.6	D -	μg/l		20.0		93	70-130	5	30
Hexachlorobutadiene	17.1	D	μg/l 		20.0		86	70-130	2	30
2-Hexanone (MBK)	14.9	D	μg/l 		20.0		74	70-130	15	30
Isopropylbenzene	19.6	D	μg/l		20.0		98	70-130	0.3	30
4-Isopropyltoluene	16.7	D	μg/l		20.0		84	70-130	3	30
Methyl tert-butyl ether	18.2	D	μg/l 		20.0		91	70-130	8	30
4-Methyl-2-pentanone (MIBK)	18.6	D	μg/l		20.0		93	70-130	10	30
Methylene chloride	18.9	D	μg/l 		20.0		95	70-130	8	30
Naphthalene	18.9	D	μg/l 		20.0		94	70-130	1	30
n-Propylbenzene	19.8	D	μg/l		20.0		99	70-130	0.2	30
Styrene	19.0	D	μg/l		20.0		95	70-130	0	30
1,1,1,2-Tetrachloroethane	18.4	D	μg/l		20.0		92	70-130	4	30
1,1,2,2-Tetrachloroethane	18.2	D	μg/l		20.0		91	70-130	0.4	30
Tetrachloroethene	18.2	D	μg/l		20.0		91	70-130	6	30
Toluene	19.2	D	μg/l		20.0		96	70-130	7	30
1,2,3-Trichlorobenzene	18.7	D	μg/l		20.0		93	70-130	1	30
1,2,4-Trichland annual	17.6	D	μg/l		20.0		88	70-130	5	30
1,3,5-Trichlorobenzene	17.8	D	μg/l		20.0		89	70-130	7	30
1,1,1-Trichloroethane	20.2	D	μg/l		20.0		101	70-130	3	30
1,1,2-Trichloroethane	19.6	D	μg/l		20.0		98	70-130	5	30
Trichloroethene	19.5	D	μg/l		20.0		98	70-130	4	30
Trichlorofluoromethane (Freon 11)	21.0	D	μg/l		20.0		105	70-130	6	30
1,2,3-Trichloropropane	18.1	D	μg/l		20.0		91	70-130	3	30
1,2,4-Trimethylbenzene	21.0	D	μg/l		20.0		105	70-130	0.1	30
1,3,5-Trimethylbenzene	21.0	D	μg/l		20.0		105	70-130	0.4	30
Vinyl chloride	18.9	D	μg/l		20.0		95	70-130	7	30
m,p-Xylene	42.4	D	μg/l		40.0		106	70-130	0.2	30
o-Xylene	19.4	D	μg/l		20.0		97	70-130	3	30
Tetrahydrofuran	19.7	D	μg/l		20.0		99	70-130	9	30
Ethyl ether	19.3	D	μg/l		20.0		97	70-130	2	30
Tert-amyl methyl ether	21.1	D	μg/l		20.0		106	70-130	4	30
Ethyl tert-butyl ether	20.6	D	μg/l		20.0		103	70-130	4	30
Di-isopropyl ether	20.2	D	μg/l		20.0		101	70-130	6	30
Tert-Butanol / butyl alcohol	210	D	μg/l		200		105	70-130	5	30
1,4-Dioxane	190	D -	μg/l		200		95	70-130	7	30
trans-1,4-Dichloro-2-butene	19.6	D	μg/l		20.0		98	70-130	6	30

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>SW846 8260C</u> Batch 2002995 - SW846 5035A Soil (high level)										
LCS Dup (2002995-BSD1)					Pre	epared & An	alyzed: 24-	Dec-20		
Ethanol	371	D	μg/l		400		93	70-130	6	30
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.3		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	50.7		μg/l		50.0		101	70-130		

24-Dec-20 15:22 Page 34 of 51

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 1311/8270D										
atch 2002978 - SW846 3510C										
Blank (2002978-BLK2)					Pre	epared & Ai	nalyzed: 23-	Dec-20		
1,4-Dichlorobenzene	< 5.00		μg/l	5.00						
2,4-Dinitrotoluene	< 5.00		μg/l	5.00						
Hexachlorobenzene	< 5.00		μg/l	5.00						
Hexachlorobutadiene	< 5.00		μg/l	5.00						
Hexachloroethane	< 5.00		μg/l	5.00						
2-Methylphenol	< 5.00		μg/l	5.00						
3 & 4-Methylphenol	< 10.0		μg/l	10.0						
Nitrobenzene	< 5.00		μg/l	5.00						
Pentachlorophenol	< 20.0		μg/l	20.0						
Pyridine	< 5.00		μg/l	5.00						
2,4,5-Trichlorophenol	< 5.00		μg/l	5.00						
2,4,6-Trichlorophenol	< 5.00		μg/l	5.00						
Surrogate: 2-Fluorobiphenyl	37.6		μg/l		50.0		75	30-130		
Surrogate: 2-Fluorophenol	30.7		μg/l		50.0		61	15-110		
Surrogate: Nitrobenzene-d5	41.2		μg/l μg/l		50.0		82	30-130		
Surrogate: Terphenyl-dl4	50.4		μg/l		50.0		101	30-130		
	50.4		μул			anarod & A	nalyzed: 23-			
LCS (2002978-BS1) 1,4-Dichlorobenzene	41.2		ua/l	5.00	50.0	spared & A	82	40-140		
2,4-Dinitrotoluene	52.2		μg/l	5.00	50.0		104	40-140		
Hexachlorobenzene			μg/l				95	40-140		
	47.7		μg/l	5.00	50.0					
Hexachlorobutadiene	43.4		μg/l	5.00	50.0		87	40-140		
Hexachloroethane	46.8		μg/l	5.00	50.0		94	40-140		
2-Methylphenol	37.7		μg/l	5.00	50.0		75 70	30-130		
3 & 4-Methylphenol	36.7		μg/l 	10.0	50.0		73	30-130		
Nitrobenzene	48.7		μg/l 	5.00	50.0		97	40-140		
Pentachlorophenol	38.6		μg/l	20.0	50.0		77	30-130		
Pyridine	21.0		μg/l	5.00	50.0		42	40-140		
2,4,5-Trichlorophenol	39.7		μg/l	5.00	50.0		79	30-130		
2,4,6-Trichlorophenol	39.2		μg/l	5.00	50.0		78	30-130		
Surrogate: 2-Fluorobiphenyl	36.0		μg/l		50.0		72	30-130		
Surrogate: 2-Fluorophenol	27.6		μg/l		50.0		55	15-110		
Surrogate: Nitrobenzene-d5	42.2		μg/l		50.0		84	30-130		
Surrogate: Terphenyl-dl4	39.0		μg/l		50.0		78	30-130		
LCS Dup (2002978-BSD1)					Pre	epared & A	nalyzed: 23-	Dec-20		
1,4-Dichlorobenzene	37.1		μg/l	5.00	50.0		74	40-140	11	20
2,4-Dinitrotoluene	47.8		μg/l	5.00	50.0		96	40-140	9	20
Hexachlorobenzene	48.9		μg/l	5.00	50.0		98	40-140	3	20
Hexachlorobutadiene	37.7		μg/l	5.00	50.0		75	40-140	14	20
Hexachloroethane	42.1		μg/l	5.00	50.0		84	40-140	10	20
2-Methylphenol	33.8		μg/l	5.00	50.0		68	30-130	11	20
3 & 4-Methylphenol	32.9		μg/l	10.0	50.0		66	30-130	11	20
Nitrobenzene	42.3		μg/l	5.00	50.0		85	40-140	14	20
Pentachlorophenol	38.7		μg/l	20.0	50.0		77	30-130	0.3	20
Pyridine	22.9		μg/l	5.00	50.0		46	40-140	9	20
2,4,5-Trichlorophenol	35.4		μg/l	5.00	50.0		71	30-130	11	20
2,4,6-Trichlorophenol	34.1		μg/l	5.00	50.0		68	30-130	14	20
Surrogate: 2-Fluorobiphenyl	31.7		μg/l		50.0		63	30-130		
Surrogate: 2-Fluorophenol	24.3		μg/l		50.0		49	30-130 15-110		
Jan ogato. E i idoropriorio	24.5		M9/1		50.0		73	.5 .10		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
rmaryto(s)	Resuit	riag	Omis	KDL	Level	Kesuit	/UNEC	LIIIIIIS	KLD	Limit
SW846 1311/8270D										
Batch 2002978 - SW846 3510C										
LCS Dup (2002978-BSD1)					Pre	epared & Ar	nalyzed: 23-	-Dec-20		
Surrogate: Terphenyl-dl4	47.6		μg/l		50.0		95	30-130		
SW846 8270D										
Batch 2002981 - SW846 3546										
Blank (2002981-BLK1)					Pre	epared & Ar	nalyzed: 23-	-Dec-20		
Acenaphthene	< 66.7		μg/kg wet	66.7		-				
Acenaphthylene	< 66.7		μg/kg wet	66.7						
Aniline	< 330		μg/kg wet	330						
Anthracene	< 66.7		μg/kg wet	66.7						
Azobenzene/Diphenyldiazene	< 330		μg/kg wet	330						
Benzidine	< 660		μg/kg wet	660						
Benzo (a) anthracene	< 66.7		μg/kg wet	66.7						
Benzo (a) pyrene	< 66.7		μg/kg wet	66.7						
Benzo (b) fluoranthene	< 66.7		µg/kg wet	66.7						
Benzo (g,h,i) perylene	< 66.7		μg/kg wet	66.7						
Benzo (k) fluoranthene	< 66.7		μg/kg wet	66.7						
Benzoic acid	< 330		μg/kg wet	330						
Benzyl alcohol	< 330		μg/kg wet	330						
Bis(2-chloroethoxy)methane	< 330		μg/kg wet	330						
Bis(2-chloroethyl)ether	< 167		μg/kg wet	167						
Bis(2-chloroisopropyl)ether	< 167		μg/kg wet	167						
Bis(2-ethylhexyl)phthalate	< 167		μg/kg wet	167						
4-Bromophenyl phenyl ether	< 330		μg/kg wet	330						
Butyl benzyl phthalate	< 330		μg/kg wet	330						
Carbazole	< 167		µg/kg wet	167						
4-Chloro-3-methylphenol	< 330		µg/kg wet	330						
4-Chloroaniline	< 167		μg/kg wet	167						
2-Chloronaphthalene	< 330		μg/kg wet	330						
2-Chlorophenol	< 167		μg/kg wet	167						
4-Chlorophenyl phenyl ether	< 330		μg/kg wet	330						
Chrysene	< 66.7		μg/kg wet	66.7						
Dibenzo (a,h) anthracene	< 66.7		μg/kg wet	66.7						
Dibenzofuran	< 167		μg/kg wet	167						
1,2-Dichlorobenzene	< 330		μg/kg wet	330						
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 330		µg/kg wet	330						
3,3'-Dichlorobenzidine	< 330 < 330		µg/kg wet	330 330						
	< 167		µg/kg wet	330 167						
2,4-Dichlorophenol Diethyl phthalate	< 330		µg/kg wet	330						
Dimethyl phthalate	< 330		µg/kg wet µg/kg wet	330						
2,4-Dimethylphenol	< 330		μg/kg wet μg/kg wet	330						
Di-n-butyl phthalate	< 330		μg/kg wet μg/kg wet	330						
4,6-Dinitro-2-methylphenol	< 330		μg/kg wet μg/kg wet	330						
2,4-Dinitrophenol	< 330		μg/kg wet μg/kg wet	330						
2,4-Dinitrotoluene	< 167		μg/kg wet	167						
2,6-Dinitrotoluene	< 167		μg/kg wet μg/kg wet	167						
Di-n-octyl phthalate	< 330		µg/kg wet	330						
Fluoranthene	< 66.7		μg/kg wet μg/kg wet	66.7						
Fluorene	< 66.7		μg/kg wet	66.7						
Hexachlorobenzene	< 167		μg/kg wet	167						
Hexachlorobutadiene	< 167		μg/kg wet	167						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2002981 - SW846 3546										
Blank (2002981-BLK1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Hexachlorocyclopentadiene	< 167		μg/kg wet	167						
Hexachloroethane	< 167		μg/kg wet	167						
Indeno (1,2,3-cd) pyrene	< 66.7		μg/kg wet	66.7						
Isophorone	< 167		μg/kg wet	167						
2-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2-Methylphenol	< 330		μg/kg wet	330						
3 & 4-Methylphenol	< 330		μg/kg wet	330						
Naphthalene	< 66.7		μg/kg wet	66.7						
2-Nitroaniline	< 330		μg/kg wet	330						
3-Nitroaniline	< 330		μg/kg wet	330						
4-Nitroaniline	< 167		μg/kg wet	167						
Nitrobenzene	< 167		μg/kg wet	167						
2-Nitrophenol	< 167		μg/kg wet	167						
4-Nitrophenol	< 330		μg/kg wet	330						
N-Nitrosodimethylamine	< 167		μg/kg wet	167						
N-Nitrosodi-n-propylamine	< 167		μg/kg wet	167						
N-Nitrosodiphenylamine	< 330		μg/kg wet	330						
Pentachlorophenol	< 330		μg/kg wet	330						
Phenanthrene	< 66.7		μg/kg wet	66.7						
Phenol	< 330		μg/kg wet	330						
Pyrene	< 66.7		μg/kg wet	66.7						
Pyridine	< 330		μg/kg wet	330						
1,2,4-Trichlorobenzene	< 330		μg/kg wet	330						
1-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2,4,5-Trichlorophenol	< 330		μg/kg wet	330						
2,4,6-Trichlorophenol	< 167		μg/kg wet	167						
Pentachloronitrobenzene	< 330		μg/kg wet	330						
1,2,4,5-Tetrachlorobenzene	< 330		μg/kg wet	330						
Surrogate: 2-Fluorobiphenyl	762		μg/kg wet		1670		46	30-130		
Surrogate: 2-Fluorophenol	985		μg/kg wet		1670		59	30-130		
Surrogate: Nitrobenzene-d5	876		μg/kg wet		1670		53	30-130		
Surrogate: Phenol-d5	933		μg/kg wet		1670		56	30-130		
Surrogate: Terphenyl-dl4	1110		μg/kg wet		1670		67	30-130		
Surrogate: 2,4,6-Tribromophenol	789		μg/kg wet		1670		47	30-130		
LCS (2002981-BS1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Acenaphthene	888		μg/kg wet	66.7	1670	•	53	40-140		
Acenaphthylene	890		μg/kg wet	66.7	1670		53	40-140		
Aniline	527	QC6	μg/kg wet	330	1670		32	40-140		
Anthracene	1050		μg/kg wet	66.7	1670		63	40-140		
Azobenzene/Diphenyldiazene	922		μg/kg wet	330	1670		55	40-140		
Benzidine	901		μg/kg wet	660	1670		54	40-140		
Benzo (a) anthracene	1160		μg/kg wet	66.7	1670		70	40-140		
Benzo (a) pyrene	1210		μg/kg wet	66.7	1670		72	40-140		
Benzo (b) fluoranthene	1260		μg/kg wet	66.7	1670		76	40-140		
Benzo (g,h,i) perylene	1210		μg/kg wet	66.7	1670		72	40-140		
Benzo (k) fluoranthene	1230		μg/kg wet	66.7	1670		74	40-140		
Benzoic acid	248	QC6	μg/kg wet	330	1670		15	30-130		
Benzyl alcohol	682		μg/kg wet	330	1670		41	40-140		
Bis(2-chloroethoxy)methane	896		μg/kg wet μg/kg wet	330	1670		54	40-140		
Bis(2-chloroethyl)ether	765		μg/kg wet μg/kg wet	167	1670		46	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8270D										
Satch 2002981 - SW846 3546										
LCS (2002981-BS1)					Pro	epared & Ai	nalyzed: 23-	-Dec-20		
Bis(2-chloroisopropyl)ether	935		μg/kg wet	167	1670		56	40-140		
Bis(2-ethylhexyl)phthalate	1160		μg/kg wet	167	1670		70	40-140		
4-Bromophenyl phenyl ether	998		μg/kg wet	330	1670		60	40-140		
Butyl benzyl phthalate	1130		μg/kg wet	330	1670		68	40-140		
Carbazole	1060		μg/kg wet	167	1670		64	40-140		
4-Chloro-3-methylphenol	874		μg/kg wet	330	1670		52	30-130		
4-Chloroaniline	669		μg/kg wet	167	1670		40	40-140		
2-Chloronaphthalene	950		μg/kg wet	330	1670		57	40-140		
2-Chlorophenol	979		μg/kg wet	167	1670		59	30-130		
4-Chlorophenyl phenyl ether	718		μg/kg wet	330	1670		43	40-140		
Chrysene	1110		μg/kg wet	66.7	1670		67	40-140		
Dibenzo (a,h) anthracene	1260		μg/kg wet	66.7	1670		76	40-140		
Dibenzofuran	1010		μg/kg wet	167	1670		60	40-140		
1,2-Dichlorobenzene	1150		μg/kg wet	330	1670		69	40-140		
1,3-Dichlorobenzene	1050		μg/kg wet	330	1670		63	40-140		
1,4-Dichlorobenzene	969		μg/kg wet	330	1670		58	40-140		
3,3´-Dichlorobenzidine	1100		μg/kg wet	330	1670		66	40-140		
2,4-Dichlorophenol	918		μg/kg wet	167	1670		55	30-130		
Diethyl phthalate	976		μg/kg wet	330	1670		59	40-140		
Dimethyl phthalate	815		μg/kg wet	330	1670		49	40-140		
2,4-Dimethylphenol	867		μg/kg wet	330	1670		52	30-130		
Di-n-butyl phthalate	1040		μg/kg wet	330	1670		62	40-140		
4,6-Dinitro-2-methylphenol	778		μg/kg wet	330	1670		47	30-130		
2,4-Dinitrophenol	424	QC6	μg/kg wet	330	1670		25	30-130		
2,4-Dinitrotoluene	1100		μg/kg wet	167	1670		66	40-140		
2,6-Dinitrotoluene	1100		μg/kg wet	167	1670		66	40-140		
Di-n-octyl phthalate	1270		μg/kg wet	330	1670		76	40-140		
Fluoranthene	1110		μg/kg wet	66.7	1670		66	40-140		
Fluorene	826		μg/kg wet	66.7	1670		50	40-140		
Hexachlorobenzene	1110		μg/kg wet	167	1670		67	40-140		
Hexachlorobutadiene	985		µg/kg wet	167	1670		59	40-140		
Hexachlorocyclopentadiene	878		μg/kg wet	167	1670		53	40-140		
Hexachloroethane	1130		μg/kg wet	167	1670		68	40-140		
Indeno (1,2,3-cd) pyrene	1150		μg/kg wet	66.7	1670		69	40-140		
Isophorone	858		μg/kg wet	167	1670		51	40-140		
2-Methylnaphthalene	1280		μg/kg wet	66.7	1670		77	40-140		
2-Methylphenol	970		μg/kg wet	330	1670		58	30-130		
3 & 4-Methylphenol	1030		μg/kg wet	330	1670		62	30-130		
Naphthalene	917		μg/kg wet	66.7	1670		55	40-140		
2-Nitroaniline	874		μg/kg wet	330	1670		52	40-140		
3-Nitroaniline	916		μg/kg wet	330	1670		55	40-140		
4-Nitroaniline	914		μg/kg wet	167	1670		55	40-140		
Nitrobenzene	1000		μg/kg wet	167	1670		60	40-140		
2-Nitrophenol	925		μg/kg wet	167	1670		55	30-130		
4-Nitrophenol	1030		μg/kg wet	330	1670		62	30-130		
N-Nitrosodimethylamine	752		μg/kg wet	167	1670		45	40-140		
N-Nitrosodi-n-propylamine	992		μg/kg wet	167	1670		60	40-140		
N-Nitrosodiphenylamine	1020		μg/kg wet	330	1670		61	40-140		
Pentachlorophenol	795		μg/kg wet	330	1670		48	30-130		
Phenanthrene	1060		μg/kg wet	66.7	1670		64	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8270D										
atch 2002981 - SW846 3546										
LCS (2002981-BS1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Phenol	832		μg/kg wet	330	1670		50	30-130		
Pyrene	1140		μg/kg wet	66.7	1670		69	40-140		
Pyridine	828		μg/kg wet	330	1670		50	40-140		
1,2,4-Trichlorobenzene	1070		μg/kg wet	330	1670		64	40-140		
1-Methylnaphthalene	905		μg/kg wet	66.7	1670		54	40-140		
2,4,5-Trichlorophenol	836		μg/kg wet	330	1670		50	30-130		
2,4,6-Trichlorophenol	795		μg/kg wet	167	1670		48	30-130		
Pentachloronitrobenzene	1140		μg/kg wet	330	1670		69	40-140		
1,2,4,5-Tetrachlorobenzene	867		μg/kg wet	330	1670		52	40-140		
Surrogate: 2-Fluorobiphenyl	840		μg/kg wet		1670		50	30-130		
Surrogate: 2-Fluorophenol	1020		μg/kg wet		1670		61	30-130		
Surrogate: Nitrobenzene-d5	901		μg/kg wet		1670		54	30-130		
Surrogate: Phenol-d5	1080		μg/kg wet		1670		65	30-130		
Surrogate: Terphenyl-dl4	1150		μg/kg wet		1670		69	30-130		
Surrogate: 2,4,6-Tribromophenol	948		μg/kg wet		1670		57	30-130		
LCS Dup (2002981-BSD1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Acenaphthene	963		μg/kg wet	66.7	1670		58	40-140	8	30
Acenaphthylene	966		μg/kg wet	66.7	1670		58	40-140	8	30
Aniline	578	QC6	μg/kg wet	330	1670		35	40-140	9	30
Anthracene	1160		μg/kg wet	66.7	1670		70	40-140	10	30
Azobenzene/Diphenyldiazene	1020		μg/kg wet	330	1670		61	40-140	10	30
Benzidine	858		μg/kg wet	660	1670		51	40-140	5	30
Benzo (a) anthracene	1250		μg/kg wet	66.7	1670		75	40-140	8	30
Benzo (a) pyrene	1350		μg/kg wet	66.7	1670		81	40-140	11	30
Benzo (b) fluoranthene	1410		μg/kg wet	66.7	1670		85	40-140	11	30
Benzo (g,h,i) perylene	1350		μg/kg wet	66.7	1670		81	40-140	11	30
Benzo (k) fluoranthene	1410		μg/kg wet	66.7	1670		85	40-140	14	30
Benzoic acid	277	QC6	μg/kg wet	330	1670		17	30-130	11	30
Benzyl alcohol	694		μg/kg wet	330	1670		42	40-140	2	30
Bis(2-chloroethoxy)methane	960		μg/kg wet	330	1670		58	40-140	7	30
Bis(2-chloroethyl)ether	926		μg/kg wet	167	1670		56	40-140	19	30
Bis(2-chloroisopropyl)ether	975		μg/kg wet	167	1670		58	40-140	4	30
Bis(2-ethylhexyl)phthalate	1260		μg/kg wet	167	1670		76	40-140	8	30
4-Bromophenyl phenyl ether	1100		μg/kg wet	330	1670		66	40-140	10	30
Butyl benzyl phthalate	1240		μg/kg wet	330	1670		74	40-140	9	30
Carbazole	1170		μg/kg wet	167	1670		70	40-140	10	30
4-Chloro-3-methylphenol	971		μg/kg wet	330	1670		58	30-130	11	30
4-Chloroaniline	681		μg/kg wet	167	1670		41	40-140	2	30
2-Chloronaphthalene	1050		μg/kg wet	330	1670		63	40-140	10	30
2-Chlorophenol	1020		μg/kg wet	167	1670		61	30-130	4	30
4-Chlorophenyl phenyl ether	763		μg/kg wet	330	1670		46	40-140	6	30
Chrysene	1220		μg/kg wet	66.7	1670		73	40-140	9	30
Dibenzo (a,h) anthracene	1400		μg/kg wet	66.7	1670		84	40-140	10	30
Dibenzofuran	1100		μg/kg wet	167	1670		66	40-140	9	30
1,2-Dichlorobenzene	1190		μg/kg wet	330	1670		72	40-140	3	30
1,3-Dichlorobenzene	1100		μg/kg wet	330	1670		66	40-140	5	30
1,4-Dichlorobenzene	1030		μg/kg wet	330	1670		62	40-140	6	30
3,3´-Dichlorobenzidine	1200		μg/kg wet	330	1670		72	40-140	8	30
2,4-Dichlorophenol	1000		μg/kg wet μg/kg wet	167	1670		60	30-130	9	30
Diethyl phthalate	1060		μg/kg wet μg/kg wet	330	1670		63	40-140	8	30

		_			Spike	Source		%REC		RPI
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
W846 8270D										
3atch 2002981 - SW846 3546										
LCS Dup (2002981-BSD1)					Pre	epared & Ar	nalyzed: 23-	Dec-20		
Dimethyl phthalate	900		μg/kg wet	330	1670		54	40-140	10	30
2,4-Dimethylphenol	944		μg/kg wet	330	1670		57	30-130	9	30
Di-n-butyl phthalate	1150		μg/kg wet	330	1670		69	40-140	10	30
4,6-Dinitro-2-methylphenol	895		μg/kg wet	330	1670		54	30-130	14	30
2,4-Dinitrophenol	531		μg/kg wet	330	1670		32	30-130	22	30
2,4-Dinitrotoluene	1220		μg/kg wet	167	1670		73	40-140	11	30
2,6-Dinitrotoluene	1220		μg/kg wet	167	1670		73	40-140	11	30
Di-n-octyl phthalate	1440		μg/kg wet	330	1670		87	40-140	13	30
Fluoranthene	1220		μg/kg wet	66.7	1670		73	40-140	10	30
Fluorene	906		μg/kg wet	66.7	1670		54	40-140	9	30
Hexachlorobenzene	1240		μg/kg wet	167	1670		74	40-140	11	30
Hexachlorobutadiene	1050		μg/kg wet	167	1670		63	40-140	7	30
Hexachlorocyclopentadiene	1050		μg/kg wet	167	1670		63	40-140	18	30
Hexachloroethane	1160		μg/kg wet	167	1670		70	40-140	3	30
Indeno (1,2,3-cd) pyrene	1400		μg/kg wet	66.7	1670		84	40-140	19	30
Isophorone	940		μg/kg wet	167	1670		56	40-140	9	30
2-Methylnaphthalene	1570		μg/kg wet	66.7	1670		94	40-140	21	30
2-Methylphenol	1020		μg/kg wet	330	1670		61	30-130	5	30
3 & 4-Methylphenol	1070		μg/kg wet μg/kg wet	330	1670		64	30-130	5	30
Naphthalene	994		μg/kg wet	66.7	1670		60	40-140	8	30
2-Nitroaniline	961		μg/kg wet μg/kg wet	330	1670		58	40-140	9	30
3-Nitroaniline	1020		μg/kg wet μg/kg wet	330	1670		61	40-140	11	30
4-Nitroaniline	1020		μg/kg wet μg/kg wet	167	1670		61	40-140	11	30
Nitrobenzene	1080		μg/kg wet μg/kg wet	167	1670		65	40-140	8	30
	1080			167	1670		60	30-130	8	30
2-Nitrophenol			μg/kg wet	330	1670		68	30-130	10	30
4-Nitrophenol	1140		μg/kg wet							30
N-Nitrosodimethylamine	689		μg/kg wet	167	1670		41	40-140	9	
N-Nitrosodi-n-propylamine	1030		μg/kg wet	167	1670		62	40-140	3	30
N-Nitrosodiphenylamine	1140		μg/kg wet	330	1670		68	40-140	11	30
Pentachlorophenol	880		μg/kg wet	330	1670		53	30-130	10	30
Phenanthrene	1170		μg/kg wet	66.7	1670		70 50	40-140	10	30
Phenol	891		μg/kg wet	330	1670		53	30-130	7	30
Pyrene	1250		μg/kg wet	66.7	1670		75	40-140	9	30
Pyridine	683		μg/kg wet	330	1670		41	40-140	19	30
1,2,4-Trichlorobenzene	1160		μg/kg wet	330	1670		69	40-140	8	30
1-Methylnaphthalene	981		μg/kg wet	66.7	1670		59	40-140	8	30
2,4,5-Trichlorophenol	890		μg/kg wet	330	1670		53 53	30-130	6	30
2,4,6-Trichlorophenol	869		μg/kg wet	167	1670		52	30-130	9	30
Pentachloronitrobenzene	1150		μg/kg wet	330	1670		69	40-140	0.3	30
1,2,4,5-Tetrachlorobenzene	927		μg/kg wet	330	1670		56	40-140	7	30
Surrogate: 2-Fluorobiphenyl	927		μg/kg wet		1670		56	30-130		
Surrogate: 2-Fluorophenol	1110		μg/kg wet		1670		66	30-130		
Surrogate: Nitrobenzene-d5	999		μg/kg wet		1670		60	30-130		
Surrogate: Phenol-d5	1140		μg/kg wet		1670		68	30-130		
Surrogate: Terphenyl-dl4	1300		μg/kg wet		1670		78	30-130		
Surrogate: 2,4,6-Tribromophenol	1070		μg/kg wet		1670		64	30-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8082A										
Batch 2002980 - SW846 3550C										
Blank (2002980-BLK1)					Pre	epared & Ar	nalyzed: 23	-Dec-20		
Aroclor-1016	< 20.0		μg/kg wet	20.0						
Aroclor-1016 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1221	< 20.0		μg/kg wet	20.0						
Aroclor-1221 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1232	< 20.0		μg/kg wet	20.0						
Aroclor-1232 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1242	< 20.0		μg/kg wet	20.0						
Aroclor-1242 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1248	< 20.0		μg/kg wet	20.0						
Aroclor-1248 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1254	< 20.0		μg/kg wet	20.0						
Aroclor-1254 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1260	< 20.0		μg/kg wet	20.0						
Aroclor-1260 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1262	< 20.0		μg/kg wet	20.0						
Aroclor-1262 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1268	< 20.0		μg/kg wet	20.0						
Aroclor-1268 [2C]	< 20.0		μg/kg wet	20.0						
Surrogate: 2,4,5,6-TC-M-Xylene (IS)	7.51		μg/kg wet		13.3		56	30-150		
Surrogate: 2,4,5,6-TC-M-Xylene (IS) [2C]	6.84		μg/kg wet		13.3		51	30-150		
Surrogate: Decachlorobiphenyl (Sr)	10.3		μg/kg wet		13.3		77	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	9.20		μg/kg wet		13.3		69	30-150		
LCS (2002980-BS1)					Pre	epared & Ar	nalyzed: 23-	-Dec-20		
Aroclor-1016	129		μg/kg wet	20.0	167		77	40-140		
Aroclor-1016 [2C]	127		μg/kg wet	20.0	167		76	40-140		
Aroclor-1260	155		μg/kg wet	20.0	167		93	40-140		
Aroclor-1260 [2C]	159		μg/kg wet	20.0	167		95	40-140		
Surrogate: 2,4,5,6-TC-M-Xylene (IS)	8.42		μg/kg wet		13.3		63	30-150		
Surrogate: 2,4,5,6-TC-M-Xylene (IS) [2C]	7.89		μg/kg wet		13.3		59	30-150		
Surrogate: Decachlorobiphenyl (Sr)	11.7		μg/kg wet		13.3		88	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	11.2		μg/kg wet		13.3		84	30-150		
LCS Dup (2002980-BSD1)					Pre	epared & Ar	nalyzed: 23	Dec-20		
Aroclor-1016	128		μg/kg wet	20.0	167		77	40-140	0.5	30
Aroclor-1016 [2C]	129		μg/kg wet	20.0	167		77	40-140	1	30
Aroclor-1260	151		μg/kg wet	20.0	167		91	40-140	3	30
Aroclor-1260 [2C]	156		μg/kg wet	20.0	167		94	40-140	2	30
Surrogate: 2,4,5,6-TC-M-Xylene (IS)	8.09		μg/kg wet		13.3		61	30-150		
Surrogate: 2,4,5,6-TC-M-Xylene (IS) [2C]	7.73		μg/kg wet		13.3		58	30-150		
Surrogate: Decachlorobiphenyl (Sr)	11.6		μg/kg wet		13.3		87	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	11.0		μg/kg wet		13.3		82	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8100Mod.										
3atch 2002977 - SW846 3546										
Blank (2002977-BLK1)					Pre	epared & Aı	nalyzed: 23-	-Dec-20		
Total Petroleum Hydrocarbons	< 13.3		mg/kg wet	13.3						
Surrogate: o-Terphenyl	3.77		mg/kg wet		6.67		57	40-140		
Surrogate: 1-Chlorooctadecane	4.69		mg/kg wet		6.67		70	40-140		
LCS (2002977-BS1)					Pre	epared & Aı	nalyzed: 23-	-Dec-20		
Total Petroleum Hydrocarbons	206		mg/kg wet	13.3	333		62	40-140		
Surrogate: o-Terphenyl	5.02		mg/kg wet		6.67		75	40-140		
Surrogate: 1-Chlorooctadecane	6.06		mg/kg wet		6.67		91	40-140		
LCS Dup (2002977-BSD1)					Pre	epared & Ar	nalyzed: 23-	-Dec-20		
Total Petroleum Hydrocarbons	215		mg/kg wet	13.3	333		65	40-140	5	30
Surrogate: o-Terphenyl	4.73		mg/kg wet		6.67		71	40-140		
Surrogate: 1-Chlorooctadecane	5.74		mg/kg wet		6.67		86	40-140		

24-Dec-20 15:22 Page 42 of 51

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
3atch 2002965 - SW846 3050B										
Blank (2002965-BLK1)					Pre	epared & Aı	nalyzed: 23	-Dec-20		
Arsenic	< 1.44		mg/kg wet	1.44						
Cadmium	< 0.479		mg/kg wet	0.479						
Chromium	< 0.957		mg/kg wet	0.957						
Lead	< 1.44		mg/kg wet	1.44						
Selenium	< 1.44		mg/kg wet	1.44						
Silver	< 1.44		mg/kg wet	1.44						
Sulfur	< 23.9		mg/kg wet	23.9						
Barium	< 0.957		mg/kg wet	0.957						
LCS (2002965-BS1)					Pre	epared: 23-	Dec-20 Ar	nalyzed: 24-D	ec-20	
Sulfur	112		mg/kg wet	25.7	129		87	85-115		
LCS Dup (2002965-BSD1)					Pre	epared: 23-	Dec-20 Ar	nalyzed: 24-D	ec-20	
Sulfur	129		mg/kg wet	26.3	131	-	98	85-115	14	30
Duplicate (2002965-DUP1)			Source: SC		Pre	epared & Ai	nalyzed: 23			
Arsenic	2.53	J,QR8	mg/kg dry	9.05	<u></u>	8.13	naryzou. zo	<u> </u>	105	20
Cadmium	0.754	J	mg/kg dry	3.02		0.915			19	20
Chromium	12.2	-	mg/kg dry	6.03		12.8			5	20
Lead	21.3		mg/kg dry	9.05		26.0			20	20
Selenium	< 9.05		mg/kg dry	9.05		4.41			20	20
Silver	< 9.05		mg/kg dry	9.05		BRL				20
Sulfur	729		mg/kg dry	151		735			0.8	20
Barium	53.9		mg/kg dry	6.03		51.5			5	20
	33.9				D			D 00	3	20
Matrix Spike (2002965-MS1)			Source: SC				nalyzed: 23			
Arsenic	751		mg/kg dry	9.38	782	8.13	95	75-125		
Cadmium	689		mg/kg dry	3.13	782	0.915	88	75-125		
Chromium	817		mg/kg dry	6.25	782	12.8	103	75-125		
Lead	737		mg/kg dry	9.38	782	26.0	91	75-125		
Selenium	682		mg/kg dry	9.38	782	4.41	87	75-125		
Silver	772		mg/kg dry	9.38	782	BRL	99	75-125		
Sulfur	1300		mg/kg dry	156	782	735	72	70-130		
Barium	788		mg/kg dry	6.25	782	51.5	94	75-125		
Matrix Spike Dup (2002965-MSD1)			Source: SC				nalyzed: 23			
Arsenic	739		mg/kg dry	9.33	777	8.13	94	75-125	2	20
Cadmium	686		mg/kg dry	3.11	777	0.915	88	75-125	0.5	20
Chromium	814		mg/kg dry	6.22	777	12.8	103	75-125	0.5	20
Lead	734		mg/kg dry	9.33	777	26.0	91	75-125	0.4	20
Selenium	697		mg/kg dry	9.33	777	4.41	89	75-125	2	20
Silver	769		mg/kg dry	9.33	777	BRL	99	75-125	0.4	20
Sulfur	1300		mg/kg dry	155	777	735	72	70-130	0.02	20
Barium	786		mg/kg dry	6.22	777	51.5	95	75-125	0.2	20
Reference (2002965-SRM1)					Pre	epared & A	nalyzed: 23	-Dec-20		
Arsenic	125		mg/kg wet	1.50	150		83	82.7-117. 9		
Cadmium	101		mg/kg wet	0.500	98.5		103	82.2-117		
Chromium	101		mg/kg wet	1.00	109		93	82-117.9		
Lead	64.0		mg/kg wet	1.50	72.1		89	83.4-142. 7		
Selenium	123	QC3	mg/kg wet	1.50	160		77	79.1-120. 9		
Silver	26.7	QC2	mg/kg wet	1.50	19.2		139	80.6-119.		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
Batch 2002965 - SW846 3050B										
Reference (2002965-SRM1)					Pre	epared & Ar	nalyzed: 23	-Dec-20		
Barium	110		mg/kg wet	1.00	128		86	82.6-117. 4		
Reference (2002965-SRM2)					Pre	epared & Ar	nalyzed: 23	•		
Arsenic	125	QM9	mg/kg wet	1.50	161	•	78	82.7-117.		
								9		
Cadmium	102		mg/kg wet	0.500	106		96	82.2-117		
Chromium	102		mg/kg wet	1.00	117		87	82-117.9		
Lead	67.6		mg/kg wet	1.50	77.4		87	83.4-142. 7		
Selenium	121	QC3	mg/kg wet	1.50	171		70	79.1 - 120.		
Silver	31.6	QC2	mg/kg wet	1.50	20.6		153	80.6-119. 8		
Barium	112	QM9	mg/kg wet	1.00	138		82	82.6-117. 4		
SW846 7471B										
Batch 2002966 - EPA200/SW7000 Series										
Blank (2002966-BLK1)					Pre	epared & Ar	nalyzed: 23	-Dec-20		
Mercury	< 0.0304		mg/kg wet	0.0304						
<u>Duplicate (2002966-DUP1)</u>			Source: SC	60301-01	Pre	epared & Ar	nalyzed: 23	-Dec-20		
Mercury	< 0.174		mg/kg dry	0.174		BRL				20
Matrix Spike (2002966-MS1)			Source: SC	60301-01	Pre	epared & Ar	nalyzed: 23	-Dec-20		
Mercury	1.41		mg/kg dry	0.167	1.16	BRL	121	75-125		
Matrix Spike Dup (2002966-MSD1)			Source: SC	60301-01	Pre	epared & Ar	nalyzed: 23	-Dec-20		
Mercury	1.55		mg/kg dry	0.185	1.29	BRL	120	75-125	10	20
Post Spike (2002966-PS1)			Source: SC	60301-01	Pre	epared & Ar	nalyzed: 23	-Dec-20		
Mercury	1.27		mg/kg dry	0.157	1.09	BRL	117	80-120		
Reference (2002966-SRM1)					<u>Pre</u>	epared & Aı	nalyzed: 23	-Dec-20		
Mercury	9.34	D	mg/kg wet	0.600	7.87		119	72.4 - 127.		

24-Dec-20 15:22 Page 44 of 51

TCLP Metals by EPA 1311 & 6000/7000 Series Methods - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 1311/6010C										
Batch 2002969 - SW846 3010A										
Blank (2002969-BLK1)					Pre	epared: 23-	Dec-20 An	alyzed: 24-D	ec-20	
Arsenic	< 0.0800		mg/l	0.0800						
Cadmium	< 0.0050		mg/l	0.0050						
Chromium	< 0.0200		mg/l	0.0200						
Lead	< 0.0150		mg/l	0.0150						
Selenium	< 0.0300		mg/l	0.0300						
Silver	0.0165	QB2	mg/l	0.0100						
Barium	< 0.100		mg/l	0.100						
LCS (2002969-BS1)	000		9,.	0.100	Dr	narod: 23	Dec 20 An	alyzed: 24-D	Noc 20	
	2.49		m #/l	0.0000		spareu. 25-	100	85-115	/EC-20	
Arsenic Cadmium			mg/l	0.0800	2.50					
	2.56		mg/l	0.0050	2.50		102	85-115		
Chromium	2.59		mg/l	0.0200	2.50		104	85-115		
Lead	2.69		mg/l	0.0150	2.50		108	85-115		
Selenium	2.37		mg/l	0.0300	2.50		95	85-115		
Silver	2.70		mg/l	0.0100	2.50		108	85-115		
Barium	2.68		mg/l	0.100	2.50		107	85-115		
LCS Dup (2002969-BSD1)					Pre	epared: 23-	Dec-20 An	alyzed: 24-D	ec-20	
Arsenic	2.28		mg/l	0.0800	2.50		91	85-115	9	20
Cadmium	2.55		mg/l	0.0050	2.50		102	85-115	0.5	20
Chromium	2.43		mg/l	0.0200	2.50		97	85-115	6	20
Lead	2.68		mg/l	0.0150	2.50		107	85-115	0.7	20
Selenium	2.36		mg/l	0.0300	2.50		95	85-115	0.4	20
Silver	2.68		mg/l	0.0100	2.50		107	85-115	0.4	20
Barium	2.66		mg/l	0.100	2.50		107	85-115	0.6	20
Duplicate (2002969-DUP1)			Source: So			enared: 23-l		alyzed: 24-D		
Arsenic	0.102	QR8		0.0800	110	0.0716	Dec-20 An	aiyzed. 24-b	35	20
Cadmium	< 0.0050	QITO	mg/l						33	20
		D06	mg/l	0.0050		BRL			_	
Chromium	0.0376	R06	mg/l	0.0200		0.0397			5	20
Lead	0.0695	1.000	mg/l	0.0150		0.0654			6	20
Selenium	0.0108	J,QR8	mg/l	0.0300		0.0066			48	20
Silver	< 0.0100		mg/l	0.0100		BRL				20
Barium	0.203		mg/l	0.100		0.192			6	20
Matrix Spike (2002969-MS1)			Source: So	C60301-02	Pre	epared: 23-	Dec-20 An	alyzed: 24-D	ec-20	
Arsenic	2.58		mg/l	0.0800	2.50	0.0185	102	75-125		
Cadmium	2.54		mg/l	0.0050	2.50	0.0007	102	75-125		
Chromium	2.55		mg/l	0.0200	2.50	0.0135	101	75-125		
Lead	2.58		mg/l	0.0150	2.50	0.0823	100	75-125		
Selenium	2.50		mg/l	0.0300	2.50	0.0121	100	75-125		
Silver	2.75		mg/l	0.0100	2.50	0.0040	110	75-125		
Barium	2.86		mg/l	0.100	2.50	0.183	107	75-125		
Matrix Spike Dup (2002969-MSD1)			Source: So	C60301-02	Pre	enared: 23-l	Dec-20 An	alyzed: 24-D	ec-20	
Arsenic	2.53		mg/l	0.0800	2.50	0.0185	100	75-125	2	20
Cadmium			-	0.0050	2.50	0.0007	100		0.01	20
	2.54		mg/l					75-125 75-125		20
Chromium	2.52		mg/l	0.0200	2.50	0.0135	100	75-125	1	
Lead	2.61		mg/l	0.0150	2.50	0.0823	101	75-125	0.8	20
Selenium	2.52		mg/l	0.0300	2.50	0.0121	100	75-125	0.8	20
Silver	2.74		mg/l	0.0100	2.50	0.0040	110	75-125	0.2	20
Barium	2.89		mg/l	0.100	2.50	0.183	108	75-125	0.9	20
Post Spike (2002969-PS1)			Source: So	C60301-02	Pre	epared: 23-	Dec-20 An	alyzed: 24-D	ec-20	
Arsenic	2.67		mg/l	0.0800	2.50	0.0185	106	80-120		
Cadmium	2.54		mg/l	0.0050	2.50	0.0007	101	80-120		

TCLP Metals by EPA 1311 & 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 1311/6010C										
Batch 2002969 - SW846 3010A										
Post Spike (2002969-PS1)			Source: S	C60301-02	Pre	epared: 23-	Dec-20 Ar	nalyzed: 24-D	ec-20	
Chromium	2.67		mg/l	0.0200	2.50	0.0135	106	80-120		
Lead	2.60		mg/l	0.0150	2.50	0.0823	101	80-120		
Selenium	2.48		mg/l	0.0300	2.50	0.0121	99	80-120		
Silver	2.73		mg/l	0.0100	2.50	0.0040	109	80-120		
Barium	2.84		mg/l	0.100	2.50	0.183	106	80-120		
SW846 1311/7470A										
Batch 2002970 - EPA200/SW7000 Series										
Blank (2002970-BLK1)					<u>Pre</u>	epared & A	nalyzed: 23	-Dec-20		
Mercury	< 0.00070		mg/l	0.00070						
LCS (2002970-BS1)					Pre	epared & A	nalyzed: 23	-Dec-20		
Mercury	0.00462		mg/l	0.00070	0.00500		92	85-115		
Duplicate (2002970-DUP1)			Source: S	C60301-03	Pre	epared & Ai	nalyzed: 23	-Dec-20		
Mercury	< 0.00070	R01	mg/l	0.00070		BRL				20
Matrix Spike (2002970-MS1)			Source: S	C60301-02	Pre	epared & A	nalyzed: 23	-Dec-20		
Mercury	0.00564		mg/l	0.00070	0.00500	BRL	113	75-125		
Matrix Spike Dup (2002970-MSD1)			Source: S	C60301-02	Pre	epared & Ai	nalyzed: 23	-Dec-20		
Mercury	0.00546		mg/l	0.00070	0.00500	BRL	109	75-125	3	20
Post Spike (2002970-PS1)			Source: S	C60301-02	Pre	epared & A	nalyzed: 23	-Dec-20		
Mercury	0.00538		mg/l	0.00070	0.00500	BRL	108	80-120		

24-Dec-20 15:22 Page 46 of 51

Toxicity Characteristics - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 9045D										
Batch 2002972 - General Preparation										
<u>Duplicate (2002972-DUP1)</u>			Source: SC	60301-02	Pre	epared & Ar	nalyzed: 22	2-Dec-20		
рН	7.04		pH Units			7.01			0.4	5
Reference (2002972-SRM1)					Pre	epared & Ar	nalyzed: 22	2-Dec-20		
рН	6.08		pH Units		6.00		101	97.5-102. 5		
Reference (2002972-SRM2)					Pre	epared & Ar	nalyzed: 22	2-Dec-20		
рН	6.11		pH Units		6.00		102	97.5-102. 5		

 ${\it This\ laboratory\ report\ is\ not\ valid\ without\ an\ authorized\ signature\ on\ the\ cover\ page}.$

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 7.3.3.1/90										
Batch 557809A - SW846 7.3.3.1/90										
Blank (CH37198-BLK)					Pre	epared & Ar	nalyzed: 24-	-Dec-20		
Reactivity Cyanide	< 5		mg/kg	5			BRL	-		
LCS (CH37198-LCS)					Pre	epared & Ar	nalyzed: 24-	-Dec-20		
Reactivity Cyanide	0.4240		mg/kg	5	0.44		96.4	85-115		30
SW846 CH7										
Batch 557809B - SW846 7.3.3.1/90										
Blank (CH37198-BLK)					Pre	epared & Ar	nalyzed: 24-	-Dec-20		
Reactivity Sulfide	< 20		mg/kg	20			BRL	-		
LCS (CH37198-LCS)					Pre	epared & Ar	nalyzed: 24-	-Dec-20		
Reactivity Sulfide	0		mg/kg	20	40		108	80-120		30

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:
This laboratory report is not valid without an authorized signature on the cover page.

24-Dec-20 15:22 Page 49 of 51

Notes and Definitions

В	Analyte is found in the associated blank as well as in the sample (CLP B-flag).
D	Data reported from a dilution
E	This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
HT2	This sample was received outside the EPA recommended holding time for the analysis specified.
QB2	The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.
QC2	Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
QC3	The spike recovery is outside acceptable limits for the LCS. The batch was accepted based upon the MS and/or MSD meeting the LCS limits criteria.
QC6	Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.
QM9	The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
QR8	Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.
R01	The Reporting Limit has been raised to account for matrix interference.
R06	MRL raised to correlate to batch QC reporting limits.
dry	Sample results reported on a dry weight basis
NR	Not Reported
RPD	Relative Percent Difference
[2C]	Indicates concentration was reported from the secondary, confirmation column.
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
рН	The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt. All soil samples are analyzed as soon as possible after sample receipt.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

This laboratory report is not valid without an authorized signature on the cover page.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Continuing Calibration Verification: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

24-Dec-20 15:22 Page 51 of 51

This laboratory report is not valid without an authorized signature on the cover page.

9 DI VOA Frozen Refrigerated Soil Jar Frozen Ambient Iced 3-3 Condition upon receipt: Present Custody Seals: 1+ QC/26/21 25:L recction Factor :ot lism-H EDD format: Jemp oc Time: Received by: Relinquished by: State-specific reporting standards: Check if chlorinated Date: Sample ID: of Plastic Lab ID: of Clear Glass of Amber Glass of VOA Vials *II 19IT C=Compsite C = Gtsp *IIn4 CN ™ Reduced* *8 q2A *A q2A $=\varepsilon x$ =7X =IX→*AQQ No QC Standard SC=Soil Gas niA InsidmA\roobnI=A SL=Sludge lio2=O2 liO=O CL DPH RCP Report? MA DEP MCP CAM Report? WW=Waste Water SW=Surface Water GW=Groundwater DW=Drinking Water Containers * additional charges may appply =II7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ QA/QC Reporting Notes: List Preservative Code below: 6=Ascorbic Acid HOBN=2 *ONH=t 3=H^z2O[†] J=HCI $I = Na_2S2O_3$ F=Field Filtered Quote #: Project Mgr: Sampler(s): Telephone #: State: Location: Site Name: Project No: Report To: Samples disposed after 30 days unless otherwise instructed. All TATs subject to laboratory approval Min. 24-hr notification needed for rushes New England :babab TAT - Date Needed: CHYIN OF CUSTODY RECORD Environment Testing Standard TAT - 7 to 10 business days sniforns 👯 Special Handling:

	Custody Seals:	Condition upon receipt:	9 # CI XI	ū		ž.						
acolong total tacced	,	—	t .	25:61	ng/	ct/e1				97E	2	
		E-mail to:	Observed Corecction Factor	025	104	19181	· ż	L	0		Horse	SNAP2. D
·		EDD format:	Do qmaT	тіте:	36	Date:	1	pλ:	Received		nquished by:	. Beli
						27						
					los m							
									,			
						><						1.
					-							
* * *												•
								A	contrad .		100	
* J	- >	$\langle X X X \rangle$	XX		7	17	590	011	OC/18/21	JA-RE)-OUH	50 1
	1 >	$\langle \times \times \times \rangle$	XX		E	70	, 9 L	7 51	(2/81/e)	W- /(4DD-6	20108097
Other:	0 1	000 00 KI	Z ====================================	# of P	# of A	Matrix # of VO.	Type	əmiT	Date:	mple ID:	RS	:In ID:
S NJ Full* Tier II* Tier IV*		FESSE	5 5	of Plastic	of Amber Glas	Matrix of VOA Vials	· 6		S=Compsite		G= Grab	
Do ov brebners [cp. 20 ov brebners] 190 ov brebners [c	Je45A	5000 SNOC	RR		of Amber Glass of Clear Glass	/ials	Observation and the second		X3= X3=	niA insidmA\range\tagainobnI=A =2X	SL=Sludge	IioS=OS IiO=O
CL DbH KCb Kebou3	6	Sietiman S	i, ii	S I S I S I S I S I S I S I S I S I S I	пыно			SIE Waler				DW=Drinking Water
	3	sisylanA		saau	uistno D			7-711	THE PARTY OF THE	4		, i, d and
QA/QC Reporting Notes:	300	ist Preservative Code be	רו	-			scorbic Acid		=II HObN= 2 •ONH=	=HCl 3=H ⁵ SO [†] 4		F=Field Filtered
A	8			:#	Quote		:.oV O	Ъ.				Project Mgr:
State:	•	Location:								1051-12	58-BL6	Telephone #:
			hesi	O WW	pa	SWY	CNE			300	1109A C	150
HV	Dido	Site Name:	1100	10	ques:	VC	56				, Mas	77
dar	1-1415					MO	⇒ A :oT soi	ioval		anduli	D) MI	Report To:
r to laboratory approval fication needed for rushes ed after 30 days unless otherwise instructed.	Min. 24-hr notit			_	C 10	C 08	Paj		n	New Englan	Ī	
ate Needed:	BQ - TAT dauA		OKD	OA BEC	IOIS	k.cr	O NIAE	CF		Environmen		
system of 01 of 7 - 7 to 10 business days	TAT brabnat2		ado								SUITO	unə 👯
gnilbnaH laioag	IS .	1 1	. 8								.50	

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC60301-01	HDD-01-S	Volatile Organic Compounds by SW846 8260	12/24/2020

Batch Summary

<u>'[none]'</u>

Subcontracted Analyses

SC60301-01 (HDD-01-S)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002934

General Chemistry Parameters

SC60301-01 (HDD-01-S)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002965

Total Metals by EPA 6000/7000 Series Methods

2002965-BLK1

2002965-BS1

2002965-BSD1

2002965-DUP1

2002965-MS1

2002965-MSD1

2002965-SRM1

2002965-SRM2

SC60301-01 (HDD-01-S)

2002966

Total Metals by EPA 6000/7000 Series Methods

2002966-BLK1

2002966-DUP1

2002966-MS1

2002966-MSD1

2002966-PS1

2002966-SRM1

SC60301-01 (HDD-01-S)

2002967

Semivolatile Organic Compounds by GCMS

SC60301-02 (HDD-01-M)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

SC60301-03 (HDD-02-ME)

2002968

Volatile Organic Compounds

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002969

TCLP Metals by EPA 1311 & 6000/7000 Series Methods

2002969-BLK1

2002969-BS1

2002969-BSD1

2002969-DUP1

2002969-MS1

2002969-MSD1

2002969-PS1

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002970

TCLP Metals by EPA 1311 & 6000/7000 Series Methods

2002970-BLK1

2002970-BS1

2002970-DUP1

2002970-MS1

2002970-MSD1

2002970-PS1

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002972

Toxicity Characteristics

2002972-DUP1

2002972-SRM1

2002972-SRM2

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002975

Volatile Organic Compounds

2002975-BLK1

2002975-BS1

2002975-BSD1

SC60301-01 (HDD-01-S)

2002976

Volatile Organic Compounds

2002976-BLK1

2002976-BLK2

2002976-BS1

2002976-BSD1

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

<u>2002977</u>

Extractable Petroleum Hydrocarbons

2002977-BLK1

2002977-BS1

2002977-BSD1

SC60301-01 (HDD-01-S)

2002978

Semivolatile Organic Compounds by GCMS

2002978-BLK2

2002978-BS1

2002978-BSD1

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002980

Semivolatile Organic Compounds by GC

2002980-BLK1

2002980-BS1

2002980-BSD1

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

2002981

Semivolatile Organic Compounds by GCMS

2002981-BLK1

2002981-BS1

2002981-BSD1

SC60301-01 (HDD-01-S)

<u>2002995</u>

Volatile Organic Compounds

2002995-BLK1

2002995-BS1

2002995-BSD1

SC60301-01RE1 (HDD-01-S)

557766A

Subcontracted Analyses

SC60301-01 (HDD-01-S)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

557809A

Subcontracted Analyses

CH37198-BLK

CH37198-LCS

SC60301-01 (HDD-01-S)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

557809B

Subcontracted Analyses

CH37198-BLK

CH37198-LCS

SC60301-01 (HDD-01-S)

SC60301-02 (HDD-01-M)

SC60301-03 (HDD-02-ME)

Appendix C Waste Disposal Documentation - Drilling Mud

ESMI of N.H. Ticket No: 339974 Date: 12/29/2020 10:37 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 1 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 12.09 Route 125 & Route 16 Franklin MA, 02038 Rochester NH MAN WT Out 10:37 AM 59,540 lb Gross: Truck: **GRAFBROS Graft Brothers** 35,360 lb Scale 1 In 10:26 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 24,180 lb Weigh Master: **ANGELA** 12.09 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

12.09 tn

ESMI of N.H. Ticket No: 340183 Date: 1/12/2021 10:24 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 3 **NRC East Environmental** Miles: Unitil Rochester 19 National Dr. Tons: 44.70 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 Out 10:23 AM 69,600 lb Gross: Truck: **GRAFBROS Graft Brothers** 34,980 lb Scale 1 In 10:16 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 34,620 lb Weigh Master: **ANGELA** 17.31 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

17.31 tn

ESMI of N.H. Ticket No: 340190 Date: 1/12/2021 12:32 PM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 3 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 44.70 Route 125 & Route 16 Franklin MA, 02038 Rochester NH 66,340 lb MAN WT Out 12:32 PM Gross: Truck: **GRAFBROS Graft Brothers** 35,740 lb Scale 1 In 12:32 PM Tare: Location: NH **NEW HAMPSHIRE** Net: 30,600 lb Weigh Master: **ANGELA** 15.30 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

15.3 tn

ESMI of N.H. Ticket No: 340195 Date: 1/12/2021 2:45 PM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 4 **NRC East Environmental** Miles: Unitil Rochester 19 National Dr. Tons: 60.44 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 66,400 lb Out 2:45 PM Gross: Truck: **GRAFBROS Graft Brothers** 34,920 lb Scale 1 In 2:36 PM Tare: Location: NH **NEW HAMPSHIRE** Net: 31,480 lb Weigh Master: **ANGELA** 15.74 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

15.74 tn

ESMI of N.H. Ticket No: 340204 Date: 1/13/2021 7:14 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 7 **NRC East Environmental** Miles: Unitil Rochester 19 National Dr. Tons: 109.25 Route 125 & Route 16 Franklin MA, 02038 Rochester NH 66,420 lb Scale 1 Out 7:14 AM Gross: Truck: **GRAFBROS Graft Brothers** 35,740 lb Scale 1 In 7:03 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 30,680 lb Weigh Master: **ANGELA** 15.34 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

15.34 tn

ESMI of N.H. Ticket No: 340211 Date: 1/13/2021 9:29 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 7 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 109.25 Route 125 & Route 16 Franklin MA, 02038 Rochester NH 68,340 lb Scale 1 Out 9:29 AM Gross: Truck: **GRAFBROS Graft Brothers** 35,060 lb Scale 1 In 9:20 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 33,280 lb Weigh Master: **ANGELA** 16.64 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

16.64 tn

ESMI of N.H. Ticket No: 340216 Date: 1/13/2021 11:31 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 7 **NRC East Environmental** Miles: Unitil Rochester 19 National Dr. Tons: 109.25 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 Out 11:30 AM 69,180 lb Gross: Truck: **GRAFBROS Graft Brothers** 35,520 lb Scale 1 In 11:22 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 33,660 lb Weigh Master: **ANGELA** 16.83 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

16.83 tn

ESMI of N.H. Ticket No: 340231 Date: 1/14/2021 7:10 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 10 **NRC East Environmental** Miles: Unitil Rochester 19 National Dr. Tons: 145.37 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 Out 7:10 AM 57,220 lb Gross: Truck: **GRAFBRO** 35,500 lb Scale 1 In 7:02 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 21,720 lb Weigh Master: **ANGELA** 10.86 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

10.86 tn

ESMI of N.H. Ticket No: 340254 Date: 1/14/2021 10:12 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 10 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 145.37 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 Out 10:12 AM 54,460 lb Gross: Truck: **GRAFBROS Graft Brothers** 36,400 lb Scale 1 In 10:03 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 18,060 lb Weigh Master: **ANGELA** 9.03 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

9.03 tn

ESMI of N.H. Ticket No: 340266 Date: 1/14/2021 1:28 PM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 10 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 145.37 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 67,560 lb Out 1:28 PM Gross: Truck: **GRAFBROS Graft Brothers** 35,100 lb Scale 1 In 1:06 PM Tare: Location: NH **NEW HAMPSHIRE** Net: 32,460 lb Weigh Master: **ANGELA** 16.23 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

16.23 tn

ESMI of N.H. Ticket No: 340278 Date: 1/15/2021 7:30 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 12 NRC East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 166.44 Route 125 & Route 16 Franklin MA, 02038 Rochester NH 58,020 lb Scale 1 Out 7:30 AM Gross: Truck: **GRAFBROS Graft Brothers** 35,560 lb Scale 1 In 7:20 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 22,460 lb Weigh Master: **ANGELA** 11.23 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

11.23 tn

CT01

ESMI of N.H. Ticket No: 340300 Date: 1/15/2021 10:57 AM 67 International Drive Phone: 6037830228 Loudon NH, 03307 6037830104 Fax: Customer: NRC10 13248 Order No: Loads: 12 **NRC** East Environmental Miles: Unitil Rochester 19 National Dr. Tons: 166.44 Route 125 & Route 16 Franklin MA, 02038 Rochester NH Scale 1 55,340 lb Out 10:57 AM Gross: Truck: **GRAFBROS Graft Brothers** 35,660 lb Scale 1 In 10:48 AM Tare: Location: NH **NEW HAMPSHIRE** Net: 19,680 lb Weigh Master: **ANGELA** 9.84 tn Angela Holub Material \$ Remarks: Thank You For Your Business Delivery \$ Misc \$ Tax \$ Total \$ Signature: **MATERIAL** QTY UNIT-\$ **DELIVERY\$** MISC \$ TAX\$ TOTAL \$

9.84 tn

CT01

NRC.

www.nrcc.com

www.nrcc.com

www.nrcc.com

NSTRUCTIONS

NEOBLANT HIPTO VIT HIR LEROLIONS BELOKE COMBITEIING THIS EQUIN VIT 9 COBIEZ MITE

Designated Facility Name and Site Address 10. Tradebe Treatment & Recycling Northeast (Newfington), LI SERIE Seality's ID SAME SEALITY ID SAME SEA	WASTE MANIFEST		Manifest Document No.	2. Page 1	Continue to the second of the	Corvoid en C	50 1200 50 1200 18418
### SEPALO Number ### OF 3 O 10 10 18 8 3 9 8 3 0 0 0 10 18 8 3 9 8 3 0 0 0 0 0 0 18 8 3 9 8 3 0 0 0 0 0 0 0 8 8 3 9 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unitil 6 Liberty Lane West Hampton NH 03842 44 Generator's Phone (6 0 3 3) 9 7, 3 = 1 4	and es repas en expression passion in its contract and the contract passion of the nechal by expression and the	Mike Dunn Pegenal anther	NHZO B.S.G.L Former	OT GGP Site Add	601	682
9. Designated Receitly Name and Site Address 10. US EPA D Number Tradeb Tradebarrent & Recycling Northeast (NewInglion), L. 410 Shattuck Waley 1410 Shattuck Waley 141	NRC East Environmental Services, Inc. 7. Transporter 2 Company Name	2. MAC 3 0 0 0 0 9	8 3 9 9	C. S.T.I. (I D. Transp E. S.T.I. (I	Lic. Plate #) orter's Phone Lic. Plate #)		5-1595
11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number) No. Type Quantity Www Water State Control (Nort-haz Drilling Mild) No. Type Quantity Www Water State Class and ID Number) No. Type Quantity Www Water State Class and ID Number) State State Class and ID Number Class and ID Number) State State Class and ID Number Class and ID N	Tradebe Treatment & Recycling Northeast (i	Newington). Li	the of the cale of (f The cale of the state of the cale of the cal	G State F SAME	acility's ID		
Signature Facility Cover or Operator: Certification of receipt of waste materials covered by this manifest except as noted in form 19. Signature Signature	ranavari pur ranar va misto distrato tababa pub ni potabili dalabat nestitar i	And its program of sections of the state of the state.	12. Conta	ainers	13. Total	Unit ' Wt/Vol	í. Waste N
State Additional Descriptions for Materials Listed Above Profile #1000297569 Additional Descriptions for Materials Listed Above Profile #1000297569 Additional Descriptions and Additional Information BASE APPLIES (1903) 1903 1903 1903 1903 1903 1903 1903 1903	b	entrary neme institutional in EPA) of Market PA Principal of the compensed riving terminating less a mones.	0 0 1	T T 0	0553	€ Sta	N O
State And comparisons, which golden A. A. State And comparisons of the property of the prope	ijela sli ilimiljer (Column 34) (Ekalmoin IVa da Abelgite, florimistikk 1910. i. 1941. og best kante beste al om sliker in 198		en Paus Peres an Frontamonta TDD Edgeas LDD L			19 402 da	
Additional Descriptions for Materials Listed Above Profile # 1000237569 State Additional Descriptions for Materials Listed Above Profile # 1000237569 State State	Chi - Maga, Jawas canonas casa lindi. colonia (Chi - Woodler boxes car'una, Guesa (Chi - Physic or clastichowes condona cases	i Tenks poracie					
Interim Final Final Interim Final Fi	가 있다면 함께 되었다. 보다고 있다면 하는 것이 되었다면 하는 것이 되었다.			se lá vjuheno Mardide blen		102.	Malit
Separate Language	Additional Descriptions for Materials Listed Above Profile #1000297569	2001-103					
EAST ENV SERVICES and a charge of making and analysis of the part	Magnet 1727: The southers, deem you will do constitute that	d. Same sense is another through any		C: Indiana		i di	
16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping in and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway according to applicable international government regulations, and all applicable state laws and regulations. Printed/Typed Name Signature Signature Printed/Typed Name Signature Signature Signature Signature Printed/Typed Name Signature Signature Signature Signature Signature Signature Month Day Printed/Typed Name Signature Signature Signature Signature Signature Month Day Printed/Typed Name Signature Signature Signature Month Day Date Printed/Typed Name Signature Signature Signature Signature Signature Month Day Date Printed/Typed Name Signature Signature Signature Signature Signature Signature Signature Date Printed/Typed Name Signature Signature Signature Signature Signature Signature Signature Date Printed/Typed Name Signature Si	EAST ENV. SERVICES, 1)PO#. 160370-1 INC 24 HOURS - The Authors of The Services and The S	TOWN Se has apace to the state of the love of the Sure state of the st	of Penartur	orezeque (DIGEA: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NRCJ	OB# 1603	70
Printed Typed Name Signature Signature Month Day	and ale diassined, dagred, marked, and labeled, and	that the contents of this consignment are f	ully and accur	ately deser	bed above by	proper shipp	oing nam
Printed/Typed Name of Secretary of Materials (Applied Typed Name of Secretary of Materials) (Applied Typed Name of Secretary of Name of Name of Secretary of Name of Name of Secretary of Name of Secretary of Name of N	하는 무슨 사람들은 살이 얼마나 사람들이 동생들이 하는데 하는데 바람이 사용이 가다고 있다.	nuchol	jest stillen Δist stillen Ass	church	<u>U</u>	Month	Day
18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name and strong as a segregation of raw vertice. Signature: 13. 1/13.	17. Transporter 1 Acknowledgement of Receipt of Materia	ils ao na nama a visipai beranpeso anting snam	aut sant san eb eeskip (25, 2016 Datentis (25, 20	18 († 1837) 20 007 – 31 784,880 7	194 3 (146) 144 3 (48) (20)	19/1 Moore	and the second second
9. Discrepancy Indication Space Facility Owner or Operator: Certification of receipt of waste materials covered by this manifest except as noted in Item 19.	0 4 FPC KOSPA and a second of Material 18. Transporter 2 Acknowledgement of Receipt of Materia		42-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0			19/1	1 ₁ 5c Date
(1984년A) 등도통입니다. 그는 그리고 그리고 있는데 아이들은 네트를 보고 하는데 아이들을 받아 하는데 그리고 있는데 사용하는데 그리고 있다. 그리고 있는데 1985년 1985년 1985년 19	내 전통 발표 함께 하시다 공급하게 되는 그렇게 하면 되고 내려가 되고 하다.		Langer) (Carlet Maria			Month :	Day Y
(1984년A) 등도통입니다. 그는 그리고 그리고 있는데 아이들은 네트를 보고 하는데 아이들을 받아 하는데 그리고 있는데 사용하는데 그리고 있다. 그리고 있는데 1985년 1985년 1985년 19							
Printed/Pyped Name	11 11 1	A = A + A	cept as noted in	n Item 19.	1	April 1911 1 Artist	Date <i>Day</i> Y

Sprague Date:	TAXO <u>ESTO:</u> PRODUCT OTHER		Sprague Operating Resot 372 Shattuck Way, Newington, NH 03801 603 Truck #: 3051	
		NRC	Trailer#:	
IH Address:	01/19/2021 09:35:13		Rec'd by:	
	1N WT 37080 1b TRUS/ #3051		Remarks:	
Carrier:	OUT TH 10:56:49			
	0 37080 fb (457) T 28440 lb N 8640 lb			Section 2
				And the second s
			Weighmaster	

www.nrcc.com

WWW.nrcc.com

INSTRUCTIONS

IMPORTANT READ ALL WISTRUCTIONS BEFORE COMPLETING THIS FORM ALL 5 COPIES MUST SEE

1/1/5

NON HAZARDOUS		US EPA ID No.		nifest cument No	THE RESERVE AND ADDRESS OF THE PARTY OF THE	ge 1	50616 0.19140	Polyego ESTATE	Angertaer Romanaltae
3. Generator's Name and Mailing Address Unitil 6 Liberty Lane West of Address Hampton NH 03842 4: Generator's Phone (-603	iyy farhis remotis mest and translers O. R. O. L	reas acti to riolizad avida	Alta: N an athunionos salones an isac	like Dun Wendung Genevisten	NH:	ZOO1	ite Add	- 6	CUMENT NUMBER 0.6.7.8 GONIC ROAD
Transporter 1 Company Name NRC East Environmental Service Transporter 2 Company Name.	s, inc.	6. MAC 3 0		3 9 9	C S.T	II. (Lic. Pla nsporter's	ite #) Phone	C of	465-1595
entions and have a substitution of the substit	DESCRIPTION OF THE PARTY OF THE	divised and to a serric	S EPA ID Numb	r 16 G Orum Berg 20 G Orum Berg 20 G Orum Brigan	F. Tran	.l. (Lic. Plansporter's	Phone	N 2 A27	erinenes Produktion Verticiles
Tradebe Treatment & Recycling North	gniweW) teee	ton). Li	PETA ID NUMBO I and ioned municipal I consist a thin mat	er Flans vestina Bossinaen in Edelsen in sk	SAM	te Facility	SID	197 237 1382 (23)	ngalaga Karaga Karaga
11. US DOT Description (Including Proper Shipp	ine Jad transporte use weets	N H D Q 8	0 5 2 1 imber)	12. Con	The state of the s	13 Tot	6 1	14. Unit	CARAMAN SCHALAGE THATS
Non-RCRA, non-DOT (Non-hez Drillin	g Mud)	rein einen seine seine seine Rein unterseinen seine In LAME onbeidese ein	a lagario eleica Il regariopera cient) ettar regament	No.	Type	Quan		Wt/Vol	Waste No State N O I
	then out on housellast	thirtract AWH belsing.	zenobout	0 0 1	TIT	1/8	00	7	State NO I
ation) name ionitina viaste as identifica in 49 CFR Parts. Aumitar (Colvino 3A) (Example: Naste Apstone, flummado Henen verso	Brogeries (15 tops) 3: AM MC right (15 3 top (15 and 15 and 15	il TCO PUbbance din 0 8 no no bio ne vibus	parejna ad jaur er esaŭ biosak l bes aktro	nousmoir Cheroka	grangt Es (13)	r eet to (112 1010e8 111 111	100 E	THIFOS	State
CM a Neda) covea carlons, cress (int. milroffs) CW = (Vocater, bryss, carlons, caste	advity		TP = Tainks, sone TT = Carpo Tanua			90: 100:	50 miles	T count	State State
OF a Fider or state boxes, nartens, cases SA a Surfap (10th, pac erodate) bags	1 65-1 II	nthean chargoniae ag	ine Cohet e ja Statigand e 10 Kappenkatae na	Nedrosob etc	58.10 (3)	object syn Biglical syn	ka aba Li-u	: : : : : : : : : : : : : : : : : : :	State
Additional Descriptions for Materials Listed Above Profile #1000297569	- - 200 -201	- 12_0 - 12_0 km 350	वित्र व भागार्थिय । ११ वर्षः १ व्यवस्थाति । १९ वर्षः		K. Hand	lling Code	s for W	astes Lis	State 141
N. S. Charles Williams (State Street	b.	25 0 of 20 g . 2m	denogram de Castilanes de la compa Maistra de la compa	tanti e ne	a.	nim	Final	b.	terim ; Fir
nante 100 su la santibilità de la prima de la la la propieta de la	formation	ES# 26946A	era mickoroni str	Skiege Proben	C.	te de la constant		d.	2000 Casso
ER CONTACT: NRC EAST ENV. SERVICES, 1)PO#: 1603 NC: - 24 HOURS - Jak 10 SERVICES of 10 DESTRICTS	n radio tina aradim	menengy recessive across gion = (below)	polite I, J\\ ⊠2 (1136 Point o	of Departur	6 1.50 gg!	of the UI South the South Villa South One of the	VRC J)B# 16	0370
 GENERATOR'S CERTIFICATION: libereby de and are classified, packed, marked, and label national government regulations, and all applic 	clare that the co ed, and are in all able state laws a	ntents of this consi	and teach of the teachers that	ALMO TO HOLES	#12 532***********************************	44 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	Committee of the Commit
i fst transbatte. That person must conforcint pa achaptar	nd to the ted on our Fig		ne name of first p- ofyecody. You instructors to	oleo en <u>co</u> n	aine a pai	W EDGEN iles) ovest WEEDGEM	ian - ak	Lesta Marie Marra	
Printed typed Name Can mell OCas a page fol S ald 7. Transporter 1 Acknowledgement of Receipt of N		Signature a	pp	4.	13 – 1 3	y COMPLETI	9 (73) 4	Monti	h Day Ye
Printed Typed Marne a sep to server on to light	ed no elegación co	Signature	12 X	iter besied	 250	- BOAGÉ () O Proces (BO) O POTAGO Santin Colo		Monti	Date Day Ye
8. Transporter 2 Acknowledgement of Receipt of N Printed/Typed Name Tofal Plant 101 assistage Pt/2 3		Signature:	AV DE RENUBER VOLUDEO IN CET	uvvaji Biologija		<u> 2.67 </u>	il il	Month	Date Day Ye
9. Discrepancy Indication Space	JBIOSLI SBITEUM.	PESOFTII TORM	MADERIALLS O	esta			d d	11	1 1
	"。			14. (1.8) (1.4) (1.4) (1.4) (2.5)	1		.i		141
Facility Owner or Operator: Certification of receipt	of waste materia	als covered by this	manifest except	as noted i	n Item 19	9.) /	.	Data
Printed/Typed Name (/ (M///)	Signature	1/4/11	MAI		r. /	//-	Month	Date Day Yes

Weighmaster

		1, 11			4.3	-			
. 15	1次をお	A 40 8	SHOW	-42K	1 %	2000	5,043	1964	140
1.80		S. 38	- 3.	. 4	5.8	2000	3 0	100	
. 19	Mar Str. A	Town P. C.	· 6.	200	Slar	4 4	9. 5	68.3	044

www.nrcc.com

www.nrcc.com

1/13/19/17/10/19/0

Generator's Name and Mailing Address Unitil Abrees and soft year orthogone Cliberty Eane West of SWH of placer of an analysis for pactions and on Hampton NH 03842	adose est baleta		paralonaco a	NHZ	001		00677 B Gonic Road
Generator's Phone (5 9 9 3 pp.b.c.) SpiZu 3 of a 1 9 9 pl. not make as. Transporter 1 Company Name	/ / US EP	2U sa sin5 A ID Numbei	berrich of acc	Roch	aster MH I. (Lic. Plate	oduska.	FERRISIS
NRC East Environmental Services, Inc. MA	US EP	네 가장 내가 작업	3 9 0	7 (F) (F) (F) (F)	sporter's P : (Lic. Plate		70-485-1595
vonepsene en il berbeer od neo roterena di in biega batterile. Il eta captore trente odi bes acceptos politem adi il i notino di unita a occidenti soli adi Designated Facility Name and Site Address 10.	DD 1659 0	Sile 2	osepter son Gi (her)esi		sporter's Pr e Facility's	The second second second	
Tradebe Treatment & Recycling Northeast (Newington), LI, 410 Shattuck Ways or beer goed elosted with to holder province eleast electric between NH, 03801	rijeht lo (ASIS vo Namened tam en	perion as perion lo redinarionelle relica à the lice les code was	8 14 13		e Facility's E-1. Ilty's Phone 46-4525		
11. US DOT Description (Including Proper Shipping Name, Hazard Class,	and ID Numb	JU 601 10 2181	12. Cont	ainers l	13. Total	14 Üni	t Desirel.
o asig and examine the superior of characteristic and groups a least set and rectamine stead as Non-RCRA, non-DOT (Non-haz Drilling Mud) to state apply and the superior and superior and superior and the superior and the superior and superi	angoli a noestral a neg redition es L'agliton es), on) en 10 simic en Difesion anside Sin Vincelous S	No.	Type	2 - Y Quanti আক্রিয়েল একরি একর	ly = 10 W#/V = 2020 1 資子 101 Y = 1 1 第二	State N O
Criss of beginnin 7	Var i be ltangis eki s Se	nymber of ha	0 0 1	TT	orabitatio ya Babarata Babarata	4 T	State N O
ive the regists tated on the mendest. US DOT (Dept.) of Transcortation) name for the weats as identified in 49 CER Parks up in 3) 3 the 4 digit (MATA 10 Number (Column 3A) (Example: Wasts Aperone, transmets	ed. The correct	notes ac teun	acio este i glatradicta Klassica	ev redina prosection	Fire sould a on 1, 27A		(2.15
the abstraction from 1750 E.1 (notwin in the near displacement of antiferror and	harigo ad bir.				<u> </u>		State State
AN LAIMEN 1992 Citie - Metal boxes, catons, cases (Incl. nat-offs)		TP = Tanka p TT = Carpo T			kegés – É Trombali	velenta i seru Capos i misiko	State
: OE ≤ Poter of masse closes, dangers states BA = Budap cloth; type-orine stir, bings	(A) Edoin	eO xeeΩ ⇒ ΩΤ T crtuC = TΩ		150%			State
is used in ICEM 14. Shades used in determining the lotal quantity of waste its scribed on each line DO.	esque o tra un for the unit of m	and the first of t	edicazoren 1 /por poli	ne vice Paric VIII	KID KKI SA TITT	rand Loren Selent	State: 14.
Additional Descriptions for Materials Listed Above Profile #1000297569		11 12 -	- 1 - 1		lling Codes erim	for Wastes Final	Listed Above Interim Fi
b. Pur graff A Trins a profest segue stage magazinal aug am segue o funde e segue.			end on a	a.			b.
gger 106 31 g as resultable ye of the against the landers are had	erin onego ent	ertd +720	81.53.72 47.73.72	C.	15 11 - 12		d ! !
EASTENV SERVICES 1)PO# 160370-TN // REF#:	2584542	HAR	FILM JAVA TAMERST	CHEMICA 11 april 34	HUCTADNU A od rowe a tv	Teli stora Teli sva u Logani	Mitaboa (d) Man Juliana No aprona
800-899-4672	Section - (below Section - (below	Point	of Departu	irei ^{ds} a	i aciskimo l	VRC JOB#	4.1 (E-F) 2.4 (A20) 1.1 DA
16. GENERATOR:S CERTIFICATION: I hereby declare that the contents of and are classified, packed, marked, and labeled, and are in all respect national government regulations, and all applicable state laws and regulations.	cts in proper co	ment are fully ondition for ti	ransport b	y highwa	scribed about a cordin	g to applica	ble internationa
ig the weale an behalf of the fet wantsporter. That person must believe delega acceptan		11018081-10	airso and 50	1900	mater and redu	APICAL PROMI	PACED BUILDING
Printed/Typed Name	Signature	zaodaudeai voi	[]]	/ /	SMBERBELOV اگر		Month Day
Tansporter 1 Acknowledgement of Receipt of Materials to 1970 to 1970 to 2016	oot beterighted to	(1964) di lo svijslose	Aprilogro	otal — (i The aut	IN CO. Sometra	WHI SEQ CHOICATIC	<u>. </u>
Printed/Typed Name or agent of the state of	Signature_	1-5	L	1	10 10 (14) 10 10 (14)	70.50 HB	Month Day
	HOMON OF OR				ila registrali naccilia la		Date Month Day
18. Transporter 2 Acknowledgement of Receipt of Materials	Signature						AND ADDRESS OF THE PERSON OF T
18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed/Namenchit stant (Newtong)s state came of fish year usy. 3:4 3.18103.138 TSUM MROTE		학교들이 된다고 있다.		rica Warran			1711
18. Transporter 2 Acknowled gement of Receipt of Materials Printed/Typed/Namewicht sich i Westrags sigst school of fick your USY. 3-A U.S. Printed/Typed/Namewicht sich i Westrags sigst school of fick your USY. 3-A		학교들이 된다고 있다.					
18. Transporter 2 Acknowledgement of Receipt of Materials And a transporter 2 Acknowledgement of Receipt of Materials Printed/Typed/Name-rolls shall be supposed to the supposed from the Acknowledge state before of from the Acknowledge states before the Acknowledge states and the Acknowledge states before the Acknowledge states and the Acknowledge states state		학교들이 된다고 있다.					

Sprague Palo	PRODUCE ATEC	L T	Sprague Operating Resources LLC 372 Shattuck Way, Newington, NH 03801 603.431.5131 Truck #:
Customer Name:	TRADERE 01/11/2021 15:26:19	INRC	Trailer#:
Address:			Rec'd by:
Commodity:	IN UT = 39920 15 TUUL + 43051		Remarks: Job# 160370
Carrier:	CUE TO 16:25:10 /	IRC/TRADERE	5,49 Ton
	T 28640 1b N 10980 1b		
			Weighmaster

INSTRUCTIONS

IMPORTANT: READ ALL WISTRUCTIONS REPORE COMPLETING THIS FORM ALL 5 COPIES MUST SEE THE PORT OF THE P

www.nrcc.com

WWW.nrcc.com

NON HAZARDOUS 1.1		Manifest Document No	2. Page		ett of yego and O Synte on	Angolion Angolion Angolion
3. Generator's Name and Mailing Address Unitil	and the second s	Mike Dunn	A. Non-l	Hazardous Ma	inifest Docu	ment Number
6 Liberty Lane West ² 1. This en of class well and a Hampton NH 03842 4 Generator's Phone (\$\omega_0^3 \omega_0^3 \omega	u has completed his section of the member, and uni	ohodánsu eri nár	P.S.G.	MGP SIRA	bU ^{Idress)} 26 G	b/b Sonic Road
5. Transporter 1 Company Name - NRC East Environmental Services, I	6. LIS FPA ID No	At Carletterminion I street	C. S.T.I.	ster NH ↓ (Lic. Plate #) porter's Phon	ACCOUNTS	(A) (SA) (SA) (SA) (SA) (SA) (SA) (SA) (
	SIGNED OF TO SERVICE DOMESTIC US EPAID NO		E. S.T.I.	(Lic. Plate #) oorter's Phone		DO-1080 Argalijas Entrept
Designated Facility Name and Site Address Tradebe Treatment & Recycling Northean 410 Shattuck Way at beau code of the rests and to	10: US EPA ID Nur F (NewIngton), Lind of the (All Entitlement of All Market Street, All English feet of the address	nber Aberra yndywo Keasaithebligi Olistage: la sto	G State SAME	Facility's ID		A 7 2 2
NewIngton NH 03801 Personal to some thought a same police was a man a data state of the waste.	CORES SER GARAGOUN OURSE PER GOOD SER HE	1 8 4 3		6-4626 13	14.	egget
11. US DOT Description (Including Proper Shipping A garden of beau good storley entire motion propers and a Non-RCRA, non-DOT (Non-hez Drilling M	is sia di foninin cien sengge a rosciesta i cast	No:	Type	Total Quantity	Unit Wt/Vol	I. Waste No.
gnafet to leave the want listed on the maniest. The address	incount name (as notified to EPA) of the HVP das most of the designated HVP identified in their?	za sen reznik (i Sudibbilio Gerenik alla	a istoria Sementum Marie Santa	nun	9	ate NON
d manifest de manifest de CER Parts 1715 esperation) name for the waste as identified in 49 CER Parts 1715	admess we HWS designated to receive the waste listed at the the centered. The correct US OOT (Dept. of Trans	0 0 1.	. I . L. I	1414	5,0000	ate:
A ID Number (Column SA) (Example: Wiste Adeltine, Barmitible 22: E.4 (hatmit to the british opinions used	lazarii Clasa (daually in Column 3). E ine 4 dign UNN Tanah sael the appropriate chimistic survey tree	fiDûrengars ,ll				ate
Chi = Matal boxes, christis casses (and roll of offs) COV = Wooden boxes, cafons, cases	table, profede = Tanke, profede = Cargo Tanke (rank byche)			zook. <mark>j</mark> lon	i samini 🕰	ate
C.F. = Fiher or player, coxes, cadons, cases 3A = B.mao cloth, yapanplastic cags 3A = B.mao cloth, yapanplastic cags	⊸ Yalok Cers ∋ Dung Trocks	on III (ii) iG	Jan Su		Sta Sta	ite
urang ere rotal quantity of waste described an leath lind. DO MC	egen jice, salative to the write used in 17EM 14. A (balow) for the wint of measure used in cotern	10 pednossia širski sis s i meri nain i	va va vale kun va vale kun L	photosom (#15) Pinipologicalist	Sta	ate .
J. Additional Descriptions for Materials Listed Above Profile #1000297569	- Leve Schique - Leve Schique and L Schique and L	-	C Handlin Interir	g Codes for V n Fin		
arm statically are emperated to part from the arm and arm of the contract of t	b. <u>distribution to property</u> estates the property and a distribution of the last of the l	undegij en e je	a. (%);) :	gen Rocks	b.	
15. Special Handling Instructions and Additional Inform	ation cas vive and a series of	11011	0 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i d.	
EAST ENVISERVICES at 11 POST of 1803 (A) and the substrated by the of an INC24 HOURS - effect to be an extensive of the observal of the substrate of the observal of the o	o bas a y dimin esta you vacements to hear se a	oka (Mala) se ven soese es	TIQUÁ A S 163 : Prod 1 Til (poets A	KOJTOURTO Protesta Vojtourou <mark>d</mark> en	ASLICIAN II O pi volost e sen kontrolo	eleco. Senco. Anasid
16 GENERATOR'S CERTIFICATION: I hereby declaring and are classified, packed, marked, and labeled, a		ully and accura	tely descr	ibed above by		pping name
national government regulations, and all applicable	state laws and regulations.	Assay to lair	iigriway.a	ecording to a	ppiicabie int	A T TO THE PARTY OF THE PARTY O
PRASCD 15/20UM	Signature (io essit sali panel kojos desilago	no Algado II — 1490	e vertesione li ke. Biblioteko (j.)	technichmen	
July statutes not a thinkel national dash case not stated at	strong Cala es case 🗴 10 CF1 464 Aparona	teri larit kir sud		MOSED: LIPMOD PROS	191	1921
Printed/Type Name SPAIN SWANT Darge of T types	Signature	ensgesed rapid Australia en av Alligat, Prio	6 94) — 2 77 44 148 S 3176 (32)	OARE VOITALE REMORTE REP ROTARE ROME	Month	Date Day Year
18. Transporter 2 Acknowledgement of Receipt of Mater	rials	MAM LITTY ISSUED	on ones of one of the	fil 10 Samus Cape O recelf an beeting	01	Date
	o den sen se villa <mark>'Signature:</mark> Tvæ: Weigel 31 38 TSUM MROY (IRT 70 231900 cilla 1930	nda nengabata Maja	V4.09903	48 PO POTTER	Month:	∴Day∷-Year
19. Discrepancy Indication Space						
			3.3			
20. Facility Owner or Operator: Certification of receipt of w	vaste materials covered by this manifest exc	ept as noted in	Item/19.) A		Date
Printed/Typed Name/	Signature	1110	(1/1/	Mall	Manthi	Pay Year

Sprague	Sprague Operating Resources LLC 372 Shattuck Way, Newington, NH 03801 603.431.5131
Date: FROCUCT OTHER	Truck#: <u>305/</u>
Customer Name:	. Trailer#:
Address:	Rec'd by:
Carrier: raye - 30260 WRC	Remarks:
22580 = Net	

Weighmaster

Appendix D Laboratory Reports - Soil Characterization Regulator Station Piping

ENVIRONMENTAL SOIL MANAGEMENT COMPANIES Generator Waste Profile

ESMI Customer: NRC East Environmental Ser	Purchase Order # 160370							
Customer Address: 114 Bridge Rd	City: Salisbury	State: MA	Zip: 01952					
Contact: Tim Warr	Tel: 603-770-2988	Fax:						
Site Contact: Mark McCabe, AECOM	Tel: 978-905-2311	Cell: 50	8-423-9018					
Site Name: Unitil Former MGP Site	Site Tel: N/A							
Site Address: Route 125	City: Rochester	State: NH	Zip: 03839					
History of Site Use: Residential Comme If commercial, industrial or other, please describe history Former MGP site.		Other:						
Event/process generating waste: Leaking UST Former MPG site.	Leaking AST Surface Sp	ill other(descri	ribe):					
Waste Material Description: Soil/media is contain	ninated with: (Check All That A	Apply)						
NON-HAZARDOUS <i>VIRGIN PETROLEUM</i> CONTAMINATED SOIL #2, #4, #6 Fuel Oil Diesel Fuel Gasoline Jet Fuel Animal/Vegetable/Tall oils White Oil Kerosene Mixed Fuels (gas/fuel oil) Petroleum Solvent Hydraulic Oil Motor Oil								
NON-HAZARDOUS NON-VIRGIN PETROLEUM CONTAMINATED SOIL Used Oils Grease/Lubes Used Animal/Vegetable/Tall Oils Waxes Petrolatum Hydraulic Oil Lubricating Oils Metal Working Oils Industrial Oils Used Petroleum Solvent Electrical Oil Transformer Oil (non-PCB) Urban Fill								
NON-HAZARDOUS <i>COAL TAR or PCB</i> COM Coal Tar PCB's (<50ppm; Not PCB Re								
NON-HAZARDOUS DREDGE CONTAMIN Dredge Soil associated with Upland Remedi	ATED SOIL (Also Identify Con	ntaminant)						
Are there any known or suspected past releases of c If YES, Specify:		bove listed? NO	■ YES □					
Approximate Tonnage: 300								
Physical Characteristics: %Gravel 40 %Sand 40 Describe Debris:	%Clay/Silt_20_ % H20	%Debris_0_	∑=100%					
I hereby certify, to the best of my knowledge, (a) I am a responsible official of the generator, (b) that the sampling requirements, pursuant to Env-Or 611.04(NH only), and any additional sampling required by the state of origin, has been adhered to, (c) that the information provided in the profile is correct and complete, (d) that the transport, treatment and recycling of the contaminated materials do not violate any laws or regulations of the state of origin.								
Signature:	Date: 12/	23/2020						
Typed/Printed Name: Mark McCabe	Company:	AECOM						
Check One: Owner: Generator: Contractor	r: 🔳 Consultant: 🗌 Other (e	xplain):						

Acceptance of all projects is predicated on the review of this form and the analytical results of the material to be received.

ESMI of New Hampshire

67 International Drive Loudon, New Hampshire 03307 Phone: 603.783.0228

Fax: 603.783.0104

ESMI of New York

304 Towpath Road Fort Edward, New York 12828 Phone: 518.747.5500

Fax: 518.747.1181

Table 1 Summary of Results Former MGP Site Rochester, NH Principal MGP Constituents and Detections Waste Profile Development

		Regulator St	ation Piping			HDD Area	
Sample Location	Trench A	Trench B	Trench C	Trench D	HDD A	HDD B	HDD C
Depths (below ground surface)	0-6 ft.	0-6 ft.	0-6 ft.	0-6 ft.	5-10 ft.	5-10 ft.	5-10 ft.
Date Collected	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020
Volatile Organic Compounds (ug/Kg	g)						
Benzene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
Toluene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
Ethylbenzene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
o-Xylene	<4.34	<5.65	<3.36	<3.10	<3.16	<2.97	<3.66
m-Xylene & p-Xylene	<8.69	<11.37	<7.37	<6.21	<6.31	<5.95	<7.33
Acetone	<4.34	<56.5	<36.9	36.3	<31.6	<29.7	<36.6
Polycyclic Aromatic Hydrocarbons	(ug/Kg)						
2-Methylnaphthalene	<376	<67.9	<355	96.2	73.6	<74.2	<76.9
Acenaphthylene	527	<67.9	1420	77.4	<70.1	114	<76.9
Anthracene	<376	<67.9	1100	134	91.8	247	<76.9
Benzo[a]anthracene	1050	<67.9	6,460	279	174	178	<76.9
Benzo[a]pyrene	1290	<67.9	6,640	318	192	262	<76.9
Benzo[b]fluoranthene	980	<67.9	8,170	476	311	157	<76.9
Benzo[g,h,i]perylene	1090	<67.9	9,550	508	325	185	<76.9
Benzo[k]fluoranthene	909	<67.9	3,640	188	211	122	<76.9
Chrysene	1010	<67.9	6,770	310	218	157	<76.9
Dibenz(a,h)anthracene	<376	<67.9	2450	159	111	<74.2	<76.9
Fluoranthene	848	<67.9	6,580	107	<70.1	<74.2	<76.9
Indeno[1,2,3-cd]pyrene	905	<67.9	7,620	395	267	151	<76.9
Naphthalene	<376	<67.9	<355	120	98.5	<74.2	<76.9
Phenanthrene	455	<67.9	1720	303	285	<74.2	<76.9
Pyrene	835	<67.9	6,930	109	<70.1	<74.2	<76.9
Total Petroleum Hydrocarbons (mg.	/Kg)						
TPH 8100	231	<13.8	1220	39.4	26.2	39.9	<15.1
Inorganic Compounds (mg/Kg)							
Arsenic	23.3	20	11.1	6.56	9.3	7.62	5.98
Barium	55.5	24	38.4	57.2	45.9	25.5	20.4
Chromium	17.7	11.1	10.1	12.3	11.7	8.84	7.03
Lead	20.1	5.13	44.2	43.9	39.2	5.21	3.36
Sulfur	184	107	318	174	158	60.9	83.8
Mercury	0.0527	<0.0312	0.087	0.0974	0.0417	<0.0367	< 0.0316
Reactive Cyanide	<10	<10	<10	<10	<10	<10	<10
Reactive Sulfde	<10	<10	<10	<10	<10	<10	<10

V	Final Report
	Revised Report

Report Date: 29-Sep-20 15:34

Laboratory Report SC59391

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Colin Callahan

Project: Rochester NH MGP Project #: 60139732*2900

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignes R Dun

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 78 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC59391

Project: Rochester NH MGP

Project Number: 60139732*2000

Project Number: 60139732*2900

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC59391-01	TrenchA_0-6	Soil	18-Sep-20 08:50	21-Sep-20 16:40
SC59391-02	TrenchB_0-6	Soil	18-Sep-20 09:10	21-Sep-20 16:40
SC59391-03	TrenchD_0-6	Soil	18-Sep-20 10:09	21-Sep-20 16:40
SC59391-04	TrenchC_0-6	Soil	18-Sep-20 09:42	21-Sep-20 16:40
SC59391-05	HDDB_5-10	Soil	18-Sep-20 11:10	21-Sep-20 16:40
SC59391-06	HDDA_5-10	Soil	18-Sep-20 10:40	21-Sep-20 16:40
SC59391-07	HDDC_5-10	Soil	18-Sep-20 11:38	21-Sep-20 16:40
SC59391-08	Trip Blank	Trip Blank	18-Sep-20 00:00	21-Sep-20 16:40

29-Sep-20 15:34 Page 2 of 78

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

VOA vials preserved with deionized water were received frozen upon custody transfer to laboratory representative.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

8260 Low Level Soil:

The original analysis of sample SC59391-02(B) yielded invalid results due to a poor purge of the sample vial. The second vial (C) was cracked upon thawing from the freezer and could not be used. A fresh sample was made (F) for the bulk soil container (D) and analyzed.

The analyte 2-Butanone (MEK) is identified as a problematic compound when purging a low level soil and failed in the initial calibration. As a result, the samples were analyzed and reported for MEK for a high level soil analysis.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

2001784-MS1 Source: SC59391-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Silver

2001784-MSD1 Source: SC59391-01

This laboratory report is not valid without an authorized signature on the cover page.

SW846 6010C

Spikes:

2001784-MSD1 Source: SC59391-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Silver

SW846 8100Mod.

Samples:

SC59391-01 TrenchA 0-6

The Reporting Limit has been raised to account for matrix interference.

SC59391-04 TrenchC 0-6

The Reporting Limit has been raised to account for matrix interference.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

1-Chlorooctadecane

SW846 8260C LLS

Laboratory Control Samples:

2001826 BS/BSD

Acetone percent recoveries (52/52) are outside individual acceptance criteria (70-130), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB_5-10

HDDC 5-10

 $TrenchA_0-6$

TrenchC_0-6

TrenchD 0-6

Trip Blank

Chloroethane percent recoveries (513/515) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

HDDA_5-10

HDDB_5-10

HDDC_5-10

TrenchA_0-6

 $TrenchC_0-6$

TrenchD 0-6

Trip Blank

Ethanol percent recoveries (52/73) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC_5-10

TrenchA_0-6

TrenchC_0-6

TrenchD_0-6

Trip Blank

2001826 BSD

SW846 8260C LLS

Laboratory Control Samples:

2001826 BSD

Ethanol RPD 34% (30%) is outside individual acceptance criteria.

2001826-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Ethanol

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001826-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Ethanol

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001880 BS/BSD

Acetone percent recoveries (39/50) are outside individual acceptance criteria (70-130), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

 $TrenchB_0\text{-}6$

Chloroethane percent recoveries (525/541) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

TrenchB_0-6

2001880-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

2001880-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Acetone

Chloroethane

Data for this analyte may be biased high based on QC spike recoveries.

Chloroethane

Samples:

SC59391-01 TrenchA_0-6

Internal standard out due to matrix interference

SW846 8260C LLS

Samples:

SC59391-03 TrenchD 0-6

Internal standard out due to matrix interference

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

4-Bromofluorobenzene

SC59391-04

TrenchC 0-6

Internal standard out due to matrix interference

SC59391-05

HDDB 5-10

Internal standard out due to matrix interference

SC59391-06

HDDA 5-10

Internal standard out due to matrix interference

SC59391-07

HDDC_5-10

Internal standard out due to matrix interference

SW846 8270D

Laboratory Control Samples:

2001800 BS/BSD

4-Bromophenyl phenyl ether percent recoveries (20/21) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC 5-10

TrenchA 0-6

TrenchB 0-6

TrenchC 0-6

TrenchD 0-6

Aniline percent recoveries (39/41) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB_5-10

HDDC 5-10

TrenchA_0-6

TrenchB_0-6

 $TrenchC_0\text{-}6$

TrenchD_0-6

SW846 8270D

Laboratory Control Samples:

2001800 BS/BSD

Benzidine percent recoveries (13/13) are outside individual acceptance criteria (40-140), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

HDDA 5-10

HDDB_5-10

HDDC_5-10

TrenchA 0-6

TrenchB 0-6

TrenchC_0-6

TrenchD 0-6

Benzoic acid percent recoveries (16/19) are outside individual acceptance criteria (30-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

HDDA_5-10

HDDB 5-10

HDDC_5-10

TrenchA 0-6

TrenchB 0-6

TrenchC 0-6

TrenchD 0-6

Pyridine percent recoveries (33/43) are outside individual acceptance criteria (40-140), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

HDDA 5-10

HDDB_5-10

HDDC 5-10

TrenchA_0-6

 $TrenchB_0\text{-}6$

TrenchC_0-6

TrenchD 0-6

2001800-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

4-Bromophenyl phenyl ether

Aniline

Benzidine

Benzoic acid

Pyridine

2001800-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

4-Bromophenyl phenyl ether

Benzidine

Benzoic acid

Duplicates:

2001800-DUP1 Source: SC59391-01

Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results

Phenanthrene

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Benzo (k) fluoranthene

SW846 8270D

Duplicates:

2001800-DUP1 Source: SC59391-01

The Reporting Limit has been raised to account for matrix interference.

Samples:

SC59391-01 TrenchA 0-6

The Reporting Limit has been raised to account for matrix interference.

SC59391-04 TrenchC 0-6

The Reporting Limit has been raised to account for matrix interference.

29-Sep-20 15:34 Page 8 of 78

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Rochester NH MGP / 60139732*2900
Work Order:	SC59391

9/21/2020

Sample(s) received on:

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	<u>/</u>		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	√		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?			

Summary of Hits

Lab ID: SC59391-01

Client ID:	TrenchA	0-6
Chent ID:	HelichA	0-0

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	23.3		1.84	mg/kg	SW846 6010C
Barium	55.5		1.22	mg/kg	SW846 6010C
Chromium	17.7		1.22	mg/kg	SW846 6010C
Lead	20.1		1.84	mg/kg	SW846 6010C
Sulfur	184		30.6	mg/kg	SW846 6010C
Mercury	0.0527		0.0375	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	231		30.7	mg/kg	SW846 8100Mod.
Acenaphthylene	527		376	μg/kg	SW846 8270D
Benzo (a) anthracene	1050		376	μg/kg	SW846 8270D
Benzo (a) pyrene	1290		376	μg/kg	SW846 8270D
Benzo (b) fluoranthene	980		376	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	1090		376	μg/kg	SW846 8270D
Benzo (k) fluoranthene	909		376	μg/kg	SW846 8270D
Chrysene	1010		376	μg/kg	SW846 8270D
Fluoranthene	848		376	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	905		376	μg/kg	SW846 8270D
Phenanthrene	455		376	μg/kg	SW846 8270D
Pyrene	835		376	μg/kg	SW846 8270D

Lab ID: SC59391-02

Client ID: TrenchB 0-6

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	20.0		1.65	mg/kg	SW846 6010C
Barium	24.0		1.10	mg/kg	SW846 6010C
Chromium	11.1		1.10	mg/kg	SW846 6010C
Lead	5.13		1.65	mg/kg	SW846 6010C
Sulfur	107		27.5	mg/kg	SW846 6010C

29-Sep-20 15:34 Page 10 of 78

Lab ID: SC59391-03

Client ID: TrenchD_0-6

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	6.56		1.54	mg/kg	SW846 6010C
Barium	57.2		1.03	mg/kg	SW846 6010C
Chromium	12.3		1.03	mg/kg	SW846 6010C
Lead	43.9		1.54	mg/kg	SW846 6010C
Sulfur	174		25.7	mg/kg	SW846 6010C
Mercury	0.0974		0.0296	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	39.4		13.4	mg/kg	SW846 8100Mod.
Acetone	36.3		31.0	μg/kg	SW846 8260C LLS
2-Methylnaphthalene	96.2		71.0	$\mu g/kg$	SW846 8270D
Acenaphthylene	77.4		71.0	$\mu g/kg$	SW846 8270D
Anthracene	134		71.0	$\mu g/kg$	SW846 8270D
Benzo (a) anthracene	279		71.0	$\mu g/kg$	SW846 8270D
Benzo (a) pyrene	318		71.0	$\mu g/kg$	SW846 8270D
Benzo (b) fluoranthene	476		71.0	$\mu g/kg$	SW846 8270D
Benzo (g,h,i) perylene	508		71.0	$\mu g/kg$	SW846 8270D
Benzo (k) fluoranthene	188		71.0	$\mu g/kg$	SW846 8270D
Chrysene	310		71.0	$\mu g/kg$	SW846 8270D
Dibenzo (a,h) anthracene	159		71.0	$\mu g/kg$	SW846 8270D
Fluoranthene	107		71.0	$\mu g/kg$	SW846 8270D
Indeno (1,2,3-cd) pyrene	395		71.0	$\mu g/kg$	SW846 8270D
Naphthalene	120		71.0	$\mu g/kg$	SW846 8270D
Phenanthrene	303		71.0	$\mu g/kg$	SW846 8270D
Pyrene	109		71.0	$\mu g/kg$	SW846 8270D

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	11.1		1.72	mg/kg	SW846 6010C
Barium	38.4		1.15	mg/kg	SW846 6010C
Chromium	10.1		1.15	mg/kg	SW846 6010C
Lead	44.2		1.72	mg/kg	SW846 6010C
Sulfur	318		28.7	mg/kg	SW846 6010C
Mercury	0.0870		0.0306	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	1220		27.3	mg/kg	SW846 8100Mod.
Acenaphthylene	1420		355	μg/kg	SW846 8270D
Anthracene	1100		355	μg/kg	SW846 8270D
Benzo (a) anthracene	6460		355	μg/kg	SW846 8270D
Benzo (a) pyrene	6640		355	μg/kg	SW846 8270D
Benzo (b) fluoranthene	8170		355	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	9550		355	μg/kg	SW846 8270D
Benzo (k) fluoranthene	3640		355	μg/kg	SW846 8270D
Chrysene	6770		355	μg/kg	SW846 8270D
Dibenzo (a,h) anthracene	2450		355	μg/kg	SW846 8270D
Fluoranthene	6580		355	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	7620		355	μg/kg	SW846 8270D
Phenanthrene	1720		355	μg/kg	SW846 8270D
Pyrene	6930		355	μg/kg	SW846 8270D
Lab ID: SC59391-05			Client ID: HDDB_	5-10	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	7.62		1.79	mg/kg	SW846 6010C
Barium	25.5		1.19	mg/kg	SW846 6010C
Chromium			1117	mg/Kg	3 W 040 0010C
Cilionium	8.84		1.19	mg/kg	SW846 6010C
Lead	8.84		1.19	mg/kg	SW846 6010C
Lead Sulfur	8.84 5.21		1.19 1.79	mg/kg mg/kg	SW846 6010C SW846 6010C
Lead Sulfur Total Petroleum Hydrocarbons	8.84 5.21 60.9		1.19 1.79 29.8	mg/kg mg/kg mg/kg	SW846 6010C SW846 6010C SW846 6010C
Lead Sulfur Fotal Petroleum Hydrocarbons Acenaphthylene	8.84 5.21 60.9 39.9		1.19 1.79 29.8 14.7	mg/kg mg/kg mg/kg mg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 8100Mod.
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene	8.84 5.21 60.9 39.9 114		1.19 1.79 29.8 14.7 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene Benzo (a) anthracene	8.84 5.21 60.9 39.9 114 247		1.19 1.79 29.8 14.7 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D SW846 8270D
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene	8.84 5.21 60.9 39.9 114 247 178		1.19 1.79 29.8 14.7 74.2 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg µg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D SW846 8270D SW846 8270D
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene	8.84 5.21 60.9 39.9 114 247 178 262		1.19 1.79 29.8 14.7 74.2 74.2 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg µg/kg µg/kg	SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D SW846 8270D SW846 8270D SW846 8270D
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	8.84 5.21 60.9 39.9 114 247 178 262		1.19 1.79 29.8 14.7 74.2 74.2 74.2 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D SW846 8270D SW846 8270D SW846 8270D SW846 8270D
Lead Sulfur Total Petroleum Hydrocarbons Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene	8.84 5.21 60.9 39.9 114 247 178 262 157 185		1.19 1.79 29.8 14.7 74.2 74.2 74.2 74.2 74.2 74.2	mg/kg mg/kg mg/kg mg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	SW846 6010C SW846 6010C SW846 8100Mod. SW846 8270D SW846 8270D SW846 8270D SW846 8270D SW846 8270D SW846 8270D SW846 8270D

Parameter	Result	Flag	Reporting Limit U		Analytical Method
Arsenic	9.30		1.66	mg/kg	SW846 6010C
Barium	45.9		1.11	mg/kg	SW846 6010C
Chromium	11.7		1.11	mg/kg	SW846 6010C
Lead	39.2		1.66	mg/kg	SW846 6010C
Sulfur	158		27.7	mg/kg	SW846 6010C
Mercury	0.0417		0.0310	mg/kg	SW846 7471B
Total Petroleum Hydrocarbons	26.2		13.7	mg/kg	SW846 8100Mod.
2-Methylnaphthalene	73.6		70.1	μg/kg	SW846 8270D
Anthracene	91.8		70.1	μg/kg	SW846 8270D
Benzo (a) anthracene	174		70.1	μg/kg	SW846 8270D
Benzo (a) pyrene	192		70.1	μg/kg	SW846 8270D
Benzo (b) fluoranthene	311		70.1	μg/kg	SW846 8270D
Benzo (g,h,i) perylene	325		70.1	μg/kg	SW846 8270D
Benzo (k) fluoranthene	211		70.1	μg/kg	SW846 8270D
Chrysene	218		70.1	μg/kg	SW846 8270D
Dibenzo (a,h) anthracene	111		70.1	μg/kg	SW846 8270D
Indeno (1,2,3-cd) pyrene	267		70.1	μg/kg	SW846 8270D
Naphthalene	98.5		70.1	μg/kg	SW846 8270D
Phenanthrene	285		70.1	μg/kg	SW846 8270D
Lab ID: SC59391-07			Client ID: HDDC_:	5-10	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method

Parameter	Result	Flag Reporting Limit	Units	Analytical Method	
Arsenic	5.98	1.95	mg/kg	SW846 6010C	
Barium	20.4	1.30	mg/kg	SW846 6010C	
Chromium	7.03	1.30	mg/kg	SW846 6010C	
Lead	3.36	1.95	mg/kg	SW846 6010C	
Sulfur	83.8	32.4	mg/kg	SW846 6010C	

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

29-Sep-20 15:34 Page 13 of 78

Sample Id TrenchA	lentification 0-6			Client Pr	roject #		Matrix	Colle	ection Date	/Time		eceived	
SC59391-01		60139732*2900			Soil	18-Sep-20 08:50			21-Sep-20				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SW by method SW846 5035A					Init	ial waight:	22.22.4					
78-93-3	2-Butanone (MEK)	< 93.9 D)	μg/kg dry	93.9	21.4	ial weight: 50	22.23 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	111			70-13	0 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	104			70-13	0 %		"	"	"	"	"	
Volatile Or	rganic Compounds by SW	846 8260	IS1										
Prepared	by method SW846 5035A	Soil (low level)				<u>Init</u>	ial weight:	6.66 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.34		μg/kg dry	4.34	2.83	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 43.4		μg/kg dry	43.4	9.73	1	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 4.34		μg/kg dry	4.34	2.61	1	"	"	"	"	"	X
71-43-2	Benzene	< 4.34		μg/kg dry	4.34	2.90	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 4.34		μg/kg dry	4.34	2.89	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 4.34		μg/kg dry	4.34	2.47	1	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 4.34		μg/kg dry	4.34	3.19	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 4.34		μg/kg dry	4.34	3.32	1	"	"	"	"		Х
74-83-9	Bromomethane	< 8.69		μg/kg dry	8.69	1.42	1		"	"	"		X
104-51-8	n-Butylbenzene	< 8.69		μg/kg dry	8.69	4.66	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 4.34		μg/kg dry	4.34	3.50	1		"	"	"		X
98-06-6	tert-Butylbenzene	< 4.34		μg/kg dry	4.34	3.42	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 8.69		μg/kg dry	8.69	3.05	1		"	"	"		X
56-23-5	Carbon tetrachloride	< 4.34		μg/kg dry	4.34	2.74	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 4.34		μg/kg dry	4.34	3.18	1	"	"	"	"		Х
75-00-3	Chloroethane	< 8.69		μg/kg dry	8.69	3.19	1	"	"	"	"		Х
67-66-3	Chloroform	< 4.34		μg/kg dry	4.34	2.92	1	"	"	"	"		Х
74-87-3	Chloromethane	< 8.69		μg/kg dry	8.69	3.34	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 4.34		μg/kg dry	4.34	3.46	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 4.34		μg/kg dry	4.34	3.77	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 8.69		μg/kg dry	8.69	3.68	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 4.34		μg/kg dry	4.34	2.88	1	"	u u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.34		μg/kg dry	4.34	3.12	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 4.34		μg/kg dry	4.34	2.55	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.34		μg/kg dry	4.34	4.03	1	"	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	< 4.34		μg/kg dry	4.34	3.48	1	"	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	< 4.34		μg/kg dry	4.34	4.12	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.69		μg/kg dry	8.69	2.33	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.34		μg/kg dry	4.34	2.95	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 4.34		μg/kg dry	4.34	2.93	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.34		μg/kg dry	4.34	2.66	1	"	"	"		"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.34		μg/kg dry	4.34	2.51	1	"	"	"		"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.34		μg/kg dry	4.34	2.70	1	"	"	"		"	Х
78-87-5	1,2-Dichloropropane	< 4.34		μg/kg dry	4.34	2.88	1	"	"	"		"	Х
142-28-9	1,3-Dichloropropane	< 4.34		μg/kg dry	4.34	3.32	1		"		"		Х

TrenchA_ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil	·	ection Date 3-Sep-20 08			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>	IS1										
594-20-7	2,2-Dichloropropane	< 4.34		μg/kg dry	4.34	<u>Init</u> 3.00	ial weight: 1	6.66 g SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	x
563-58-6	1,1-Dichloropropene	< 4.34		μg/kg dry	4.34	2.95	1	"	"		"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.34		μg/kg dry	4.34	2.83	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.34		μg/kg dry	4.34	3.30	1	"	"	u u	"	"	Х
100-41-4	Ethylbenzene	< 4.34		μg/kg dry	4.34	3.10	1	п	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 8.69		μg/kg dry	8.69	4.37	1	п	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 8.69		μg/kg dry	8.69	2.55	1		"	"	"		Х
98-82-8	Isopropylbenzene	< 4.34		μg/kg dry	4.34	3.28	1		"	"	"		Х
99-87-6	4-Isopropyltoluene	< 4.34		μg/kg dry	4.34	4.27	1		"	"	"		Х
1634-04-4	Methyl tert-butyl ether	< 4.34		μg/kg dry	4.34	2.41	1	"	"	"	"		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 8.69		μg/kg dry	8.69	2.81	1	"	n	u u	"	"	Х
75-09-2	Methylene chloride	< 8.69		μg/kg dry	8.69	2.33	1	"	"	"	"		Х
91-20-3	Naphthalene	< 4.34		μg/kg dry	4.34	3.93	1	"	"	"	"		Х
103-65-1	n-Propylbenzene	< 4.34		μg/kg dry	4.34	3.68	1	"	"	"	"		Х
100-42-5	Styrene	< 4.34		μg/kg dry	4.34	3.36	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 4.34		μg/kg dry	4.34	3.26	1		"	"	"		Х
79-34-5	1,1,2,2-Tetrachloroethane	< 4.34		μg/kg dry	4.34	3.98	1		"	"	"		Х
127-18-4	Tetrachloroethene	< 4.34		μg/kg dry	4.34	2.42	1		"	"	"		Х
108-88-3	Toluene	< 4.34		μg/kg dry	4.34	2.75	1		"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 4.34		μg/kg dry	4.34	3.67	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 4.34		μg/kg dry	4.34	4.01	1		"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 4.34		μg/kg dry	4.34	4.13	1		"	"	"		
71-55-6	1,1,1-Trichloroethane	< 4.34		μg/kg dry	4.34	2.96	1	"	"	"	"		Х
79-00-5	1,1,2-Trichloroethane	< 4.34		μg/kg dry	4.34	3.28	1	"	"		"		Х
79-01-6	Trichloroethene	< 4.34		μg/kg dry	4.34	2.92	1	"	"		"		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 4.34		μg/kg dry	4.34	3.32	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 4.34		μg/kg dry	4.34	3.82	1	"	"	"	"		Х
95-63-6	1,2,4-Trimethylbenzene	< 4.34		μg/kg dry	4.34	3.68	1	"	"		"		Х
108-67-8	1,3,5-Trimethylbenzene	< 4.34		μg/kg dry	4.34	3.69	1	"	"		"		Х
75-01-4	Vinyl chloride	< 4.34		μg/kg dry	4.34	2.65	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 8.69		μg/kg dry	8.69	5.94	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 4.34		μg/kg dry	4.34	3.17	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 8.69		μg/kg dry	8.69	2.20	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 4.34		μg/kg dry	4.34	2.29	1		"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 4.34		μg/kg dry	4.34	3.43	1	"	п	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 4.34		μg/kg dry	4.34	2.86	1	"	п	"	"	"	
108-20-3	Di-isopropyl ether	< 4.34		μg/kg dry	4.34	3.10	1	"	п	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 86.9		μg/kg dry	86.9	23.3	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 86.9		μg/kg dry	86.9	27.0	1	"	"	"	"	"	X
110-57-6	trans-1,4-Dichloro-2-buten e	< 21.7		μg/kg dry	21.7	3.21	1	"	"	"	"	"	X
64-17-5	Ethanol	< 869		μg/kg dry	869	53.9	1		"	"	"		

Surrogate recoveries:

Sample Identification

Sample Id TrenchA			<u>Client F</u> 6013973	Project # 32*2900		<u>Matrix</u> Soil		ection Date 3-Sep-20 08			ceived Sep-20	
CAS No.	Analyte(s)	Result Fl	ag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS										
Semivola	tile Organic Compounds	R	01									
4165-60-0	Nitrobenzene-d5	88		30-13	30 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	86		30-13	30 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	72		30-13	30 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	72		30-13	30 %			"	"	"	"	
Extractab	le Petroleum Hydrocarbon	ıs										
Fingerprir	nting by GC	R	01									
Prepared	by method SW846 3546											
	Total Petroleum Hydrocarbons	231	mg/kg dry	30.7	25.6	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	77		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	101		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Serie by method SW846 3050											
7440-22-4	Silver	< 3.67	mg/kg dry	3.67	0.198	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	X
7440-38-2	Arsenic	23.3	mg/kg dry	1.84	0.233	1	"	"	23-Sep-20	"		Χ
7440-39-3	Barium	55.5	mg/kg dry	1.22	0.144	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.612	mg/kg dry	0.612	0.0317	1	"	"	"	"		Χ
7440-47-3	Chromium	17.7	mg/kg dry	1.22	0.163	1	"	"	"	"	"	Χ
7439-97-6	Mercury	0.0527	mg/kg dry	0.0375	0.0104	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
Prepared	by method SW846 3050	<u>B</u>										
7439-92-1	Lead	20.1	mg/kg dry	1.84	0.259	1	SW846 6010C	"	28-Sep-20	PMH/ED	Γ2001784	Χ
7782-49-2	Selenium	< 1.84	mg/kg dry	1.84	0.350	1	"	"	"	"	"	Χ
7704-34-9	Sulfur	184	mg/kg dry	30.6	2.10	1	"	"	23-Sep-20	"	"	
General C	Chemistry Parameters											
	% Solids	86.4	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	octed Analyses by method 7.3.3											
Analysis p	erformed by Eurofins TestAn	nerica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:36	2337	551420	
Prepared	by method 7.3.4						N					

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 18 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

Sample Identification TrenchB_0-6 SC59391-02			·	<u>Client Project #</u> 60139732*2900			·	Collection Date/Time 18-Sep-20 09:10			Received 21-Sep-20		
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert	
Volatile Oi	rganic Compounds												
Volatile O	rganic Compounds by SW												
<u>Prepared</u> 78-93-3	by method SW846 5035A 2-Butanone (MEK)	Soil (high level) < 60.3 D	μg/kg dry	60.3	<u>Init</u> 13.8	ial weight: 50	27.33 g SW846 8260C	23-Sen-20	23-Sep-20	DDP	2001812	×	
	· · ·	- 00.0	pg/kg dry		10.0			20 OCP 20	20-00p-20		2001012		
Surrogate r		0.4		70.40	0.07		"				"		
460-00-4	4-Bromofluorobenzene	94		70-13						"	"		
2037-26-5	Toluene-d8	110		70-13						"	"		
17060-07-0	1,2-Dichloroethane-d4	115		70-13			,	,	,		"		
1868-53-7	Dibromofluoromethane	104		70-13	10 %		-						
	rganic Compounds by SW by method SW846 5035A				Init	ial weight:	4 58 a						
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.65	μg/kg dry	5.65	3.68	1	SW846 8260C LLS	28-Sep-20	29-Sep-20	MED	2001880	Х	
67-64-1	Acetone	< 56.5	μg/kg dry	56.5	12.7	1	"	"	"	"		Х	
107-13-1	Acrylonitrile	< 5.65	μg/kg dry	5.65	3.39	1		"	"	"		Х	
71-43-2	Benzene	< 5.65	μg/kg dry	5.65	3.77	1	"	"	"	"		Х	
108-86-1	Bromobenzene	< 5.65	μg/kg dry	5.65	3.76	1		"	"	"		Х	
74-97-5	Bromochloromethane	< 5.65	μg/kg dry	5.65	3.21	1	"	"	"	"		Х	
75-27-4	Bromodichloromethane	< 5.65	μg/kg dry	5.65	4.15	1		"	"	"		Х	
75-25-2	Bromoform	< 5.65	μg/kg dry	5.65	4.32	1	"	"	"	"		Х	
4-83-9	Bromomethane	< 11.3	μg/kg dry	11.3	1.84	1	"	"	"	"		Х	
04-51-8	n-Butylbenzene	< 11.3	μg/kg dry	11.3	6.06	1	"	"	"	"		Х	
35-98-8	sec-Butylbenzene	< 5.65	μg/kg dry	5.65	4.55	1	"	"	"	"		Х	
8-06-6	tert-Butylbenzene	< 5.65	μg/kg dry	5.65	4.45	1			"			Х	
5-15-0	Carbon disulfide	< 11.3	μg/kg dry	11.3	3.97	1	"	"	"	"		Х	
6-23-5	Carbon tetrachloride	< 5.65	μg/kg dry	5.65	3.56	1	"	"	"	"		Х	
08-90-7	Chlorobenzene	< 5.65	μg/kg dry	5.65	4.14	1	"	"	"	"		Х	
5-00-3	Chloroethane	< 11.3	μg/kg dry	11.3	4.15	1	"	"	"	"		Х	
7-66-3	Chloroform	< 5.65	μg/kg dry	5.65	3.80	1	"	"	"	"		Х	
4-87-3	Chloromethane	< 11.3	μg/kg dry	11.3	4.34	1	"	"	"	"		Х	
5-49-8	2-Chlorotoluene	< 5.65	μg/kg dry	5.65	4.50	1	"	"	"	"		Х	
06-43-4	4-Chlorotoluene	< 5.65	μg/kg dry	5.65	4.90	1	"	"	"	"		Х	
96-12-8	1,2-Dibromo-3-chloroprop	< 11.3	μg/kg dry	11.3	4.79	1	"	"	"	"	"	Х	
24-48-1	Dibromochloromethane	< 5.65	μg/kg dry	5.65	3.74	1	"	"	"	"		Х	
06-93-4	1,2-Dibromoethane (EDB)	< 5.65	μg/kg dry	5.65	4.06	1	"	u u	"	"		Х	
4-95-3	Dibromomethane	< 5.65	μg/kg dry	5.65	3.32	1	"	"	"	"		Х	
5-50-1	1,2-Dichlorobenzene	< 5.65	μg/kg dry	5.65	5.24	1	"	"	"	"		Х	
41-73-1	1,3-Dichlorobenzene	< 5.65	μg/kg dry	5.65	4.53	1	"	"	"	"	"	Х	
06-46-7	1,4-Dichlorobenzene	< 5.65	μg/kg dry	5.65	5.36	1	"	"	"	"	"	Х	
5-71-8	Dichlorodifluoromethane (Freon12)	< 11.3	μg/kg dry	11.3	3.03	1	"	"	"	"	"	Х	
5-34-3	1,1-Dichloroethane	< 5.65	μg/kg dry	5.65	3.83	1	"	"	"	"	"	Х	
07-06-2	1,2-Dichloroethane	< 5.65	μg/kg dry	5.65	3.81	1	"	"	"	"	"	Х	
75-35-4	1,1-Dichloroethene	< 5.65	μg/kg dry	5.65	3.46	1	n .	n .	"	"	"	Х	
56-59-2	cis-1,2-Dichloroethene	< 5.65	μg/kg dry	5.65	3.27	1	"	"	"	"	"	Х	
56-60-5	trans-1,2-Dichloroethene	< 5.65	μg/kg dry	5.65	3.51	1	"	"	"	"	"	Х	
8-87-5	1,2-Dichloropropane	< 5.65	μg/kg dry	5.65	3.74	1	"	"	"	"	"	Х	
42-28-9	1,3-Dichloropropane	< 5.65	μg/kg dry	5.65	4.32	1	n n	"	"	"		Х	

Sample Identification TrenchB_0-6 SC59391-02			<u>Client Project #</u> 60139732*2900			<u>Matrix</u> Soil		ection Date 8-Sep-20 09	<u>Re</u> 21-				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>											
							ial weight:						
594-20-7	2,2-Dichloropropane	< 5.65		µg/kg dry	5.65	3.90	1	SW846 8260C LLS	28-Sep-20	29-Sep-20	MED	2001880) X
563-58-6	1,1-Dichloropropene	< 5.65		μg/kg dry	5.65	3.84	1	"	"	•	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.65		μg/kg dry	5.65	3.68	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.65		μg/kg dry	5.65	4.29	1	ıı	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.65		μg/kg dry	5.65	4.03	1		u	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 11.3		μg/kg dry	11.3	5.68	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 11.3		μg/kg dry	11.3	3.32	1	u	u	u u	"	"	Х
98-82-8	Isopropylbenzene	< 5.65		μg/kg dry	5.65	4.27	1	"	"	"	"	"	X
99-87-6	4-Isopropyltoluene	< 5.65		μg/kg dry	5.65	5.55	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 5.65		μg/kg dry	5.65	3.13	1	ıı	"	"	"	"	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 11.3		μg/kg dry	11.3	3.65	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 11.3		μg/kg dry	11.3	3.03	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 5.65		μg/kg dry	5.65	5.11	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 5.65		μg/kg dry	5.65	4.78	1	"	"	"	"	"	Х
100-42-5	Styrene	< 5.65		μg/kg dry	5.65	4.37	1	"	"	"	"	"	X
630-20-6	1,1,1,2-Tetrachloroethane	< 5.65		μg/kg dry	5.65	4.24	1	"	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 5.65		μg/kg dry	5.65	5.18	1	"	"	"	"		Х
127-18-4	Tetrachloroethene	< 5.65		μg/kg dry	5.65	3.14	1	u	u	"	"	"	Х
108-88-3	Toluene	< 5.65		μg/kg dry	5.65	3.58	1	"	"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 5.65		μg/kg dry	5.65	4.77	1	"	"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 5.65		μg/kg dry	5.65	5.21	1	"	"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 5.65		μg/kg dry	5.65	5.37	1	"	u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.65		μg/kg dry	5.65	3.85	1	ıı	"	"	"	"	X
79-00-5	1,1,2-Trichloroethane	< 5.65		μg/kg dry	5.65	4.26	1	"	u	"	"	"	Х
79-01-6	Trichloroethene	< 5.65		μg/kg dry	5.65	3.80	1	"	u	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.65		μg/kg dry	5.65	4.32	1	"	· ·	п	u	"	Х
96-18-4	1,2,3-Trichloropropane	< 5.65		μg/kg dry	5.65	4.97	1	"	"	"	"		Х
95-63-6	1,2,4-Trimethylbenzene	< 5.65		μg/kg dry	5.65	4.78	1	"	"	"	"	"	X
108-67-8	1,3,5-Trimethylbenzene	< 5.65		μg/kg dry	5.65	4.80	1	"	"	"	"	"	Χ
75-01-4	Vinyl chloride	< 5.65		μg/kg dry	5.65	3.45	1	"	"	"	"		Х
179601-23-1	m,p-Xylene	< 11.3		μg/kg dry	11.3	7.72	1	"	"	"	"		Х
95-47-6	o-Xylene	< 5.65		μg/kg dry	5.65	4.12	1	"	"	"	"		Х
109-99-9	Tetrahydrofuran	< 11.3		μg/kg dry	11.3	2.86	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 5.65		μg/kg dry	5.65	2.97	1	"	"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 5.65		μg/kg dry	5.65	4.46	1		"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 5.65		μg/kg dry	5.65	3.72	1		"	"	"	"	
108-20-3	Di-isopropyl ether	< 5.65		μg/kg dry	5.65	4.03	1		"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 113		μg/kg dry	113	30.3	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 113		μg/kg dry	113	35.1	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 28.3		μg/kg dry	28.3	4.17	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 1130		μg/kg dry	1130	70.1	1	"	"	"			

Surrogate recoveries:

Sample Id	lentification			Client P	roject#		Matrix	Coll	ection Date	/Time	R _e	ceived	
TrenchB_0-6			<u>Client Project #</u> 60139732*2900			Soil	Collection Date/Time 18-Sep-20 09:10						
SC59391-02 CAS No. Analyta(c) Pagett B							3011	10	.10	21-	Sep-20		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	lle Organic Compounds by (GCMS											
Semivolat	ile Organic Compounds												
131-11-3	Dimethyl phthalate	< 336		μg/kg dry	336	37.7	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Х
105-67-9	2,4-Dimethylphenol	< 336		μg/kg dry	336	26.6	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 336		μg/kg dry	336	35.9	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 336		μg/kg dry	336	48.1	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 336		μg/kg dry	336	34.8	1	"	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 170		μg/kg dry	170	40.7	1	"	"	"	"	"	X
606-20-2	2,6-Dinitrotoluene	< 170		μg/kg dry	170	34.7	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 336		μg/kg dry	336	50.0	1	"	"	"			Х
206-44-0	Fluoranthene	< 67.9		μg/kg dry	67.9	39.8	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 67.9		μg/kg dry	67.9	43.9	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 170		μg/kg dry	170	42.7	1		"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 170		μg/kg dry	170	42.7	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 170		μg/kg dry	170	42.8	1	"	n .	"	"	"	X
67-72-1	Hexachloroethane	< 170		μg/kg dry	170	38.4	1		"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 67.9		μg/kg dry	67.9	46.4	1		"	"	"	"	Х
78-59-1	Isophorone	< 170		μg/kg dry	170	26.1	1		"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 67.9		μg/kg dry	67.9	47.5	1	"					Х
95-48-7	2-Methylphenol	< 336		μg/kg dry	336	27.0	1			"	"		Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 336		μg/kg dry	336	26.4	1	"	"	"	"	"	X
91-20-3	Naphthalene	< 67.9		μg/kg dry	67.9	39.2	1	"	"	"	"	"	Х
88-74-4	2-Nitroaniline	< 336		μg/kg dry	336	30.4	1	"		"	"	"	Х
99-09-2	3-Nitroaniline	< 336		μg/kg dry	336	31.0	1		"	"	"	"	Х
100-01-6	4-Nitroaniline	< 170		μg/kg dry	170	44.8	1		"	"	"	"	Х
98-95-3	Nitrobenzene	< 170		μg/kg dry	170	39.3	1		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 170		μg/kg dry	170	29.7	1		"	"	"	"	Х
100-02-7	4-Nitrophenol	< 1340		μg/kg dry	1340	44.7	1	"					Х
62-75-9	N-Nitrosodimethylamine	< 170		μg/kg dry	170	22.2	1			"	"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 170		μg/kg dry	170	29.7	1		"	"	"	"	Х
86-30-6	N-Nitrosodiphenylamine	< 336		μg/kg dry	336	34.2	1		"	"	"	"	Х
87-86-5	Pentachlorophenol	< 336		μg/kg dry	336	40.0	1		"				Х
85-01-8	Phenanthrene	< 67.9		μg/kg dry	67.9	38.5	1						Х
108-95-2	Phenol	< 336		µg/kg dry	336	34.0	1			"	"	"	Х
129-00-0	Pyrene	< 67.9		μg/kg dry	67.9	37.4	1			,,	"	"	Х
110-86-1	Pyridine	< 336			336	79.5	1		"	"	,,		X
120-82-1	1,2,4-Trichlorobenzene	< 336		µg/kg dry	336	41.3	1	,,					X
90-12-0				µg/kg dry				,,			"		^
	1-Methylnaphthalene	< 67.9		µg/kg dry	67.9	37.4	1				"	"	V
95-95-4	2,4,5-Trichlorophenol	< 336		µg/kg dry	336	34.7	1				"	"	X
88-06-2	2,4,6-Trichlorophenol	< 170		µg/kg dry	170	41.5	1				"		X
82-68-8	Pentachloronitrobenzene	< 336		μg/kg dry	336	35.7	1				"	"	X
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 336		μg/kg dry	336	40.0	1	"	"	"	"		Х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	41			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	66			30-13	0 %		"	"	"	"		

Sample Identification TrenchB_0-6 SC59391-02 CAS No. Analyte(s)				lient Project # 0139732*2900			Collection Date/Time 18-Sep-20 09:10			Received 21-Sep-20		
CAS No.	Analyte(s)	Result Fla	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolati	ile Organic Compounds by	GCMS										
Semivolat	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	57		30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	ı
4165-62-2	Phenol-d5	64		30-13	80 %		"	"	"	"		
1718-51-0	Terphenyl-dl4	70		30-13	80 %		"	"	"	"		
118-79-6	2,4,6-Tribromophenol	73		30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbon	ıs										
	nting by GC by method SW846 3546											
	Total Petroleum Hydrocarbons	< 13.8	mg/kg dry	13.8	11.5	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	70		40-14	10 %		"	"	"	"		
3386-33-2	1-Chlorooctadecane	81		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Serie by method SW846 3050											
7440-22-4	Silver	< 3.30	mg/kg dry	3.30	0.178	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	X
7440-38-2	Arsenic	20.0	mg/kg dry	1.65	0.209	1	"	"	23-Sep-20	"	"	Χ
7440-39-3	Barium	24.0	mg/kg dry	1.10	0.130	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.550	mg/kg dry	0.550	0.0285	1	"	"	"	ıı	"	Х
7440-47-3	Chromium	11.1	mg/kg dry	1.10	0.146	1	"	"	"	ıı	"	Х
7439-97-6	Mercury	< 0.0312	mg/kg dry	0.0312	0.0087	1	SW846 7471B	"	29-Sep-20	edt	2001785	X
	by method SW846 3050	<u>B</u>										
7439-92-1	Lead	5.13	mg/kg dry	1.65	0.233	1	SW846 6010C	"	28-Sep-20	PMH/ED	Γ2001784	X
7782-49-2	Selenium	< 1.65	mg/kg dry	1.65	0.315	1	"	"	"	"	"	Х
7704-34-9	Sulfur	107	mg/kg dry	27.5	1.88	1	"	"	23-Sep-20	"	"	
General C	hemistry Parameters											
	% Solids	96.6	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	ı
	by method 7.3.3											
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:37	2337	551420	
<u>Prepared</u>	by method 7.3.4						.,					
Analysis pe	erformed by Eurofins TestAn	nerica - Buffalo - 2337										
	Sulfide, Reactive	< 10	mg/kg	10	10	1	SW846 9034_Reactive	"	28-Sep-20 14:06	2337	551421	

29-Sep-20 15:34 Page 23 of 78

TrenchD_ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil	·	ection Date 3-Sep-20 10			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Oi	rganic Compounds												
Volatile O	rganic Compounds by SW												
<u>Prepared</u> 78-93-3	by method SW846 5035A 2-Butanone (MEK)	Soil (high level) < 64.8)	μg/kg dry	64.8	<u>Init</u> 14.8	ial weight: 50	27.79 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	×
Surrogate r				1-337									
30110gale 1 460-00-4	4-Bromofluorobenzene	96			70-13	20.0%		n n					
2037-26-5	Toluene-d8	110			70-13 70-13			"		"			
17060-07-0	1,2-Dichloroethane-d4	109			70-13			"		"			
1868-53-7	Dibromofluoromethane	103			70-13				"	"	"		
	rganic Compounds by SW		IS1		70-13	10 %							
	by method SW846 5035A		101			Init	ial weight:	8.62 q					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.10		μg/kg dry	3.10	2.02	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
67-64-1	Acetone	36.3		μg/kg dry	31.0	6.95	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 3.10		μg/kg dry	3.10	1.86	1	"	"	"			Х
71-43-2	Benzene	< 3.10		μg/kg dry	3.10	2.07	1	"	"	"			Х
108-86-1	Bromobenzene	< 3.10		μg/kg dry	3.10	2.07	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 3.10		μg/kg dry	3.10	1.76	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 3.10		μg/kg dry	3.10	2.28	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 3.10		μg/kg dry	3.10	2.37	1		"				Х
74-83-9	Bromomethane	< 6.21		μg/kg dry	6.21	1.01	1		"				Х
104-51-8	n-Butylbenzene	< 6.21		μg/kg dry	6.21	3.33	1	"	"	"			Х
135-98-8	sec-Butylbenzene	< 3.10		μg/kg dry	3.10	2.50	1		"				Х
98-06-6	tert-Butylbenzene	< 3.10		μg/kg dry	3.10	2.45	1		"				Х
75-15-0	Carbon disulfide	< 6.21		μg/kg dry	6.21	2.18	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 3.10		μg/kg dry	3.10	1.96	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 3.10		μg/kg dry	3.10	2.27	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 6.21		μg/kg dry	6.21	2.28	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 3.10		μg/kg dry	3.10	2.09	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 6.21		μg/kg dry	6.21	2.38	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 3.10		μg/kg dry	3.10	2.47	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 3.10		μg/kg dry	3.10	2.69	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 6.21		μg/kg dry	6.21	2.63	1	"	w	W	"	"	Х
124-48-1	Dibromochloromethane	< 3.10		μg/kg dry	3.10	2.06	1	"	"	"	"		Χ
106-93-4	1,2-Dibromoethane (EDB)	< 3.10		μg/kg dry	3.10	2.23	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 3.10		μg/kg dry	3.10	1.83	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.88	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.49	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.10		μg/kg dry	3.10	2.94	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 6.21		μg/kg dry	6.21	1.66	1	"	"	n	"	"	X
75-34-3	1,1-Dichloroethane	< 3.10		μg/kg dry	3.10	2.10	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.10		μg/kg dry	3.10	2.09	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.10		μg/kg dry	3.10	1.90	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.10		μg/kg dry	3.10	1.79	1	"	"	n n	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.10		μg/kg dry	3.10	1.93	1	"	"	n n	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.10		μg/kg dry	3.10	2.06	1	n .	"	n n	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.10		μg/kg dry	3.10	2.37	1	"	"	"		"	Х

	03			6013973	roject # 2*2900		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 3-Sep-20 10			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Org	ganic Compounds												
	ganic Compounds by SW	846 8260	IS1										
							ial weight:						
594-20-7	2,2-Dichloropropane	< 3.10		μg/kg dry	3.10	2.14	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
563-58-6	1,1-Dichloropropene	< 3.10		μg/kg dry	3.10	2.11	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 3.10		μg/kg dry	3.10	2.02	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.10		μg/kg dry	3.10	2.36	1	·	"	"	"	"	Х
100-41-4	Ethylbenzene	< 3.10		μg/kg dry	3.10	2.22	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 6.21		μg/kg dry	6.21	3.12	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 6.21		μg/kg dry	6.21	1.83	1	"	"	"	"	"	Х
98-82-8	Isopropylbenzene	< 3.10		μg/kg dry	3.10	2.35	1	"	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	< 3.10		μg/kg dry	3.10	3.05	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 3.10		μg/kg dry	3.10	1.72	1	"	"	"	"	"	Х
	4-Methyl-2-pentanone (MIBK)	< 6.21		μg/kg dry	6.21	2.01	1	"	"	n	"	"	Х
75-09-2	Methylene chloride	< 6.21		μg/kg dry	6.21	1.66	1	"	u u	II .	"	"	Χ
91-20-3	Naphthalene	< 3.10		μg/kg dry	3.10	2.81	1	"	u u	II .	"	"	Χ
103-65-1	n-Propylbenzene	< 3.10		μg/kg dry	3.10	2.63	1	"	u u	II .	"	"	Χ
100-42-5	Styrene	< 3.10		μg/kg dry	3.10	2.40	1	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 3.10		μg/kg dry	3.10	2.33	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 3.10		μg/kg dry	3.10	2.84	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 3.10		μg/kg dry	3.10	1.73	1		"	"	"	"	Х
108-88-3	Toluene	< 3.10		μg/kg dry	3.10	1.97	1		"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.62	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.86	1	"	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 3.10		μg/kg dry	3.10	2.95	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 3.10		μg/kg dry	3.10	2.12	1		"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 3.10		μg/kg dry	3.10	2.34	1		"	"	"	"	Х
79-01-6	Trichloroethene	< 3.10		μg/kg dry	3.10	2.09	1		"	"	"	"	Х
	Trichlorofluoromethane (Freon 11)	< 3.10		μg/kg dry	3.10	2.37	1	n .	"	"	"	u	Х
96-18-4	1,2,3-Trichloropropane	< 3.10		μg/kg dry	3.10	2.73	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 3.10		μg/kg dry	3.10	2.63	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 3.10		μg/kg dry	3.10	2.64	1	"	"	"	"	"	Χ
75-01-4	Vinyl chloride	< 3.10		μg/kg dry	3.10	1.89	1	"	"	"	"	"	Χ
179601-23-1	m,p-Xylene	< 6.21		μg/kg dry	6.21	4.24	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 3.10		μg/kg dry	3.10	2.27	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 6.21		μg/kg dry	6.21	1.57	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 3.10		μg/kg dry	3.10	1.63	1		"	n	"	"	Х
994-05-8	Tert-amyl methyl ether	< 3.10		μg/kg dry	3.10	2.45	1	· ·	n	n	"	"	
637-92-3	Ethyl tert-butyl ether	< 3.10		μg/kg dry	3.10	2.04	1	"	u	n n	"	"	
108-20-3	Di-isopropyl ether	< 3.10		μg/kg dry	3.10	2.22	1	· ·	n	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 62.1		μg/kg dry	62.1	16.6	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 62.1		μg/kg dry	62.1	19.3	1	"	"	"	"	"	Х
	trans-1,4-Dichloro-2-buten e	< 15.5		μg/kg dry	15.5	2.29	1	"	"	"	"	"	X
64-17-5	Ethanol	< 621		μg/kg dry	621	38.5	1	"	n n	"	"	"	

Surrogate recoveries:

TrenchD SC59391				Client Pr 6013973	-		<u>Matrix</u> Soil		ection Date 3-Sep-20 10			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
Volatile O	organic Compounds by SW	846 8260	IS1										
460-00-4	4-Bromofluorobenzene	67	SGCMS VOC		70-13		tial weight:	8.62 g SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	i
2037-26-5	Toluene-d8	92	VOO		70-13	80 %		"	"			"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	80 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	114			70-13	80 %		ıı .	"	"	"	"	
Semivolat	ile Organic Compounds by (GCMS											
	tile Organic Compounds												
Prepared	by method SW846 3546												
83-32-9	Acenaphthene	< 71.0		μg/kg dry	71.0	37.7	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800) X
208-96-8	Acenaphthylene	77.4		μg/kg dry	71.0	37.1	1	"	"	"	"		X
62-53-3	Aniline	< 351		μg/kg dry	351	22.4	1	"	"	"	"	"	X
120-12-7	Anthracene	134		μg/kg dry	71.0	40.9	1	"	"	"	"		X
103-33-3	Azobenzene/Diphenyldiaz ene	< 351		μg/kg dry	351	38.1	1	"	"	"	u	"	
92-87-5	Benzidine	< 703		μg/kg dry	703	22.4	1	"	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	279		μg/kg dry	71.0	39.9	1	"	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	318		μg/kg dry	71.0	48.6	1	"	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	476		μg/kg dry	71.0	53.5	1	"	"	"	"		X
191-24-2	Benzo (g,h,i) perylene	508		μg/kg dry	71.0	50.2	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	188		μg/kg dry	71.0	60.7	1	"	"	"	"	"	Χ
65-85-0	Benzoic acid	< 351		μg/kg dry	351	21.1	1	"	"	"	"		X
100-51-6	Benzyl alcohol	< 351		μg/kg dry	351	81.3	1	"	"	"	"	"	X
111-91-1	Bis(2-chloroethoxy)metha ne	< 351		μg/kg dry	351	35.5	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 178		μg/kg dry	178	32.9	1	"	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 178		μg/kg dry	178	28.5	1	"	"	u	"	"	Χ
117-81-7	Bis(2-ethylhexyl)phthalate	< 178		μg/kg dry	178	45.3	1	"	"	"	"	"	Χ
101-55-3	4-Bromophenyl phenyl ether	< 351		μg/kg dry	351	39.7	1	"	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 351		μg/kg dry	351	35.2	1	"	"	"	"	"	Χ
86-74-8	Carbazole	< 178		μg/kg dry	178	40.9	1	"	"	"	"	"	X
59-50-7	4-Chloro-3-methylphenol	< 351		μg/kg dry	351	41.3	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 178		μg/kg dry	178	21.9	1	"	"	"	"	"	Χ
91-58-7	2-Chloronaphthalene	< 351		μg/kg dry	351	48.1	1	"	"	"	"	"	Χ
95-57-8	2-Chlorophenol	< 178		μg/kg dry	178	34.1	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 351		μg/kg dry	351	34.4	1	"	"	"	"	"	Х
218-01-9	Chrysene	310		μg/kg dry	71.0	40.1	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	159		μg/kg dry	71.0	52.5	1	"	n n	"	"	"	Χ
132-64-9	Dibenzofuran	< 178		μg/kg dry	178	47.8	1	II .	n	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 351		μg/kg dry	351	42.0	1	· ·	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 351		μg/kg dry	351	37.9	1	"	n n	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 351		μg/kg dry	351	39.9	1	II .	n	"	"	"	Χ
91-94-1	3,3'-Dichlorobenzidine	< 351		μg/kg dry	351	38.9	1	II .	n	"	"	"	Χ
120-83-2	2,4-Dichlorophenol	< 178		μg/kg dry	178	43.1	1	u	"	"	"	"	Χ
84-66-2	Diethyl phthalate	< 351		μg/kg dry	351	36.8	1	"	"	"	"	"	Χ

-	dentification			Client P	roiect#		Matrix	Colle	ection Date	/Time	Re	ceived	
TrenchD				6013973			Soil		3-Sep-20 10			Sep-20	
SC59391	-03								1			1	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	ile Organic Compounds by (GCMS											
Semivola	tile Organic Compounds												
131-11-3	Dimethyl phthalate	< 351		μg/kg dry	351	39.5	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	X
105-67-9	2,4-Dimethylphenol	< 351		μg/kg dry	351	27.8	1	"	"	"	"		Х
84-74-2	Di-n-butyl phthalate	< 351		μg/kg dry	351	37.6	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 351		μg/kg dry	351	50.4	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 351		μg/kg dry	351	36.4	1		"	"	"		Х
121-14-2	2,4-Dinitrotoluene	< 178		μg/kg dry	178	42.6	1		"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 178		μg/kg dry	178	36.3	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 351		μg/kg dry	351	52.3	1	"	"	"	"		Х
206-44-0	Fluoranthene	107		μg/kg dry	71.0	41.6	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 71.0		μg/kg dry	71.0	45.9	1	"	"	"	"		Х
118-74-1	Hexachlorobenzene	< 178		μg/kg dry	178	44.7	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 178		μg/kg dry	178	44.7	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 178		μg/kg dry	178	44.8	1	"	"	W	"	"	Х
67-72-1	Hexachloroethane	< 178		μg/kg dry	178	40.1	1	"	"	"	"		Х
193-39-5	Indeno (1,2,3-cd) pyrene	395		μg/kg dry	71.0	48.6	1	"	"	"	"	"	Х
78-59-1	Isophorone	< 178		μg/kg dry	178	27.4	1	"	"	"	"	"	Х
1-57-6	2-Methylnaphthalene	96.2		μg/kg dry	71.0	49.7	1	"	"	"	"	"	Х
95-48-7	2-Methylphenol	< 351		μg/kg dry	351	28.2	1		"	"	"		Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 351		μg/kg dry	351	27.6	1	"	"	"	"	"	X
91-20-3	Naphthalene	120		μg/kg dry	71.0	41.0	1	"	"	"	"		Х
88-74-4	2-Nitroaniline	< 351		μg/kg dry	351	31.8	1	"	"	"	"		Х
99-09-2	3-Nitroaniline	< 351		μg/kg dry	351	32.5	1		"	"	"		Х
100-01-6	4-Nitroaniline	< 178		μg/kg dry	178	46.8	1	"	"	"	"	"	Х
98-95-3	Nitrobenzene	< 178		μg/kg dry	178	41.1	1	"	"	"	"		Х
88-75-5	2-Nitrophenol	< 178		μg/kg dry	178	31.1	1		"	"	"		Х
100-02-7	4-Nitrophenol	< 1410		μg/kg dry	1410	46.7	1	"	"	"	"		Х
62-75-9	N-Nitrosodimethylamine	< 178		μg/kg dry	178	23.2	1	"	"	"	"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 178		μg/kg dry	178	31.1	1	"	"	"	"	"	Х
36-30-6	N-Nitrosodiphenylamine	< 351		μg/kg dry	351	35.8	1	"	"	"	"		Х
37-86-5	Pentachlorophenol	< 351		μg/kg dry	351	41.8	1	"	"	"	"		Х
85-01-8	Phenanthrene	303		μg/kg dry	71.0	40.2	1	"	"	"	"		Х
08-95-2	Phenol	< 351		μg/kg dry	351	35.6	1	"	"	"	"	"	Х
129-00-0	Pyrene	109		μg/kg dry	71.0	39.2	1		"	"	"		Х
110-86-1	Pyridine	< 351		μg/kg dry	351	83.2	1		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 351		μg/kg dry	351	43.2	1	"	"	"	"		Х
0-12-0	1-Methylnaphthalene	< 71.0		μg/kg dry	71.0	39.2	1	"	"			"	
5-95-4	2,4,5-Trichlorophenol	< 351		μg/kg dry	351	36.3	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 178		μg/kg dry	178	43.4	1				"	"	X
32-68-8	Pentachloronitrobenzene	< 351		μg/kg dry	351	37.4	1	"	"	"	"	"	X
95-94-3	1,2,4,5-Tetrachlorobenzen	< 351		μg/kg dry	351	41.8	1	"	"	"	"	"	X
	e			ויש פיייטיז			•						
-	recoveries:												
321-60-8	2-Fluorobiphenyl	52			30-13			"	"	"	"	"	
367-12-4	2-Fluorophenol	77			30-13	0 %		"	"	"	"	"	

Sample Id TrenchD	dentification _0-6			Client P			Matrix		ection Date			ceived	
SC59391	-03			6013973	2*2900		Soil	18	-Sep-20 10):09	21-	Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds b	y GCMS											
Semivola	tile Organic Compounds												
4165-60-0	Nitrobenzene-d5	73			30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	85			30-13	80 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	73			30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	68			30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbo	ns											
	nting by GC by method SW846 3546	6											
	Total Petroleum Hydrocarbons	39.4		mg/kg dry	13.4	11.2	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:												
84-15-1	o-Terphenyl	73			40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	85			40-14	10 %		"	"	"	"	"	
Total Meta	als by EPA 6000/7000 Seri	es Methods											
<u>Prepared</u>	by method SW846 3050	<u>)B</u>											
7440-22-4	Silver	< 3.08		mg/kg dry	3.08	0.167	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Χ
7440-38-2	Arsenic	6.56		mg/kg dry	1.54	0.195	1	"	"	23-Sep-20	"	"	Χ
7440-39-3	Barium	57.2		mg/kg dry	1.03	0.121	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.514		mg/kg dry	0.514	0.0266	1	"	"	"	"	"	Χ
7440-47-3	Chromium	12.3		mg/kg dry	1.03	0.137	1	"	"	"	"	"	Χ
7439-97-6	Mercury	0.0974		mg/kg dry	0.0296	0.0082	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
	by method SW846 3050												
7439-92-1	Lead	43.9		mg/kg dry	1.54	0.218	1	SW846 6010C	"	28-Sep-20	PMH/ED	12001784	
7782-49-2	Selenium	< 1.54		mg/kg dry	1.54	0.294	1	"	"	•	"	•	Х
7704-34-9	Sulfur	174		mg/kg dry	25.7	1.76	1	"	"	23-Sep-20	"	"	
General C	Chemistry Parameters												
	% Solids	93.4		%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	by method 7.3.3												
Analysis p	erformed by Eurofins TestA	merica - Buffalo - 23	37										
	Cyanide, Reactive	< 10		mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:40	2337	551420	
Prepared	by method 7.3.4							N					
	erformed by Eurofins TestA	merica - Buffalo - 23	137										

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 28 of 78

mg/kg

10

10

1

Sulfide, Reactive

< 10

-	lentification			Client Pr	oject #		Matrix	Coll	ection Date	/Time	<u>Re</u>	ceived	
TrenchC_ SC59391-				6013973	2*2900		Soil	18	8-Sep-20 09	:42	21-	Sep-20	
	-04												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	rganic Compounds by SW					1		07.40					
78-93-3	by method SW846 5035A 2-Butanone (MEK)	< 65.7 C)	μg/kg dry	65.7	<u>Inii</u> 15.0	ial weight: 50	27.16 g SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	X
Curronata	· · · · · · · · · · · · · · · · · · ·												
Surrogate r 460-00-4	4-Bromofluorobenzene	97			70-13	0.0/		"					
2037-26-5	Toluene-d8	97 110			70-13 70-13			"					
17060-07-0	1,2-Dichloroethane-d4	112			70-13 70-13			"	"				
1868-53-7	Dibromofluoromethane	104			70-13			"	"				
	rganic Compounds by SW		IS1		70-13	U 76							
	by method SW846 5035A		101			Init	ial weight:	7.24 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.69		μg/kg dry	3.69	2.40	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 36.9		μg/kg dry	36.9	8.26	1	"	"	"			Х
107-13-1	Acrylonitrile	< 3.69		μg/kg dry	3.69	2.21	1	"	"	"	"		Х
71-43-2	Benzene	< 3.69		μg/kg dry	3.69	2.46	1	"	"	"	"		Х
108-86-1	Bromobenzene	< 3.69		μg/kg dry	3.69	2.45	1	"	"	"			Х
74-97-5	Bromochloromethane	< 3.69		μg/kg dry	3.69	2.09	1	"	"	"			Х
75-27-4	Bromodichloromethane	< 3.69		μg/kg dry	3.69	2.71	1	"	"	"			Х
75-25-2	Bromoform	< 3.69		μg/kg dry	3.69	2.82	1	"	"	"	"		Х
74-83-9	Bromomethane	< 7.37		μg/kg dry	7.37	1.20	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 7.37		μg/kg dry	7.37	3.95	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 3.69		μg/kg dry	3.69	2.97	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 3.69		μg/kg dry	3.69	2.90	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 7.37		μg/kg dry	7.37	2.59	1	n .	"	"	"		Х
56-23-5	Carbon tetrachloride	< 3.69		μg/kg dry	3.69	2.32	1	n .	"	"	"		Х
108-90-7	Chlorobenzene	< 3.69		μg/kg dry	3.69	2.70	1	"	"	"			Х
75-00-3	Chloroethane	< 7.37		μg/kg dry	7.37	2.71	1	"	"	"			Х
67-66-3	Chloroform	< 3.69		μg/kg dry	3.69	2.48	1	"	"	"	"		Х
74-87-3	Chloromethane	< 7.37		μg/kg dry	7.37	2.83	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 3.69		μg/kg dry	3.69	2.93	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 3.69		μg/kg dry	3.69	3.20	1	"	"	u	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 7.37		μg/kg dry	7.37	3.13	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 3.69		μg/kg dry	3.69	2.44	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.69		μg/kg dry	3.69	2.65	1	"	"	u	"	"	Х
74-95-3	Dibromomethane	< 3.69		μg/kg dry	3.69	2.17	1	"	"	u	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.69		μg/kg dry	3.69	3.42	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.69		μg/kg dry	3.69	2.96	1	"	"	u	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.69		μg/kg dry	3.69	3.49	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.37		μg/kg dry	7.37	1.98	1	"	n .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.69		μg/kg dry	3.69	2.50	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.69		μg/kg dry	3.69	2.48	1	II .	n	u.	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.69		μg/kg dry	3.69	2.26	1	II .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.69		μg/kg dry	3.69	2.13	1	II .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.69		μg/kg dry	3.69	2.29	1	II .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.69		μg/kg dry	3.69	2.44	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.69		μg/kg dry	3.69	2.82	1	"					Х

TrenchC_ SC59391-				Client Pr 6013973			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 3-Sep-20 09			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>	IS1										
594-20-7	2,2-Dichloropropane	< 3.69		μg/kg dry	3.69	<u>Init</u> 2.54	<u>ial weight:</u> 1	7.24 g SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	×
563-58-6	1,1-Dichloropropene	< 3.69		μg/kg dry	3.69	2.51	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 3.69		μg/kg dry	3.69	2.40	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.69		μg/kg dry	3.69	2.80	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 3.69		μg/kg dry	3.69	2.63	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 7.37		μg/kg dry	7.37	3.71	1		"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 7.37		μg/kg dry	7.37	2.17	1		"	"	"	"	Х
98-82-8	Isopropylbenzene	< 3.69		μg/kg dry	3.69	2.79	1		"	"	"		Х
99-87-6	4-Isopropyltoluene	< 3.69		μg/kg dry	3.69	3.62	1		"	"	"		Х
1634-04-4	Methyl tert-butyl ether	< 3.69		μg/kg dry	3.69	2.04	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 7.37		μg/kg dry	7.37	2.38	1	"	"	"	"	"	X
75-09-2	Methylene chloride	< 7.37		μg/kg dry	7.37	1.98	1	"	"	"	"		Х
91-20-3	Naphthalene	< 3.69		μg/kg dry	3.69	3.33	1	"	"	"	"		Х
103-65-1	n-Propylbenzene	< 3.69		μg/kg dry	3.69	3.12	1	"	"	"	"		Х
100-42-5	Styrene	< 3.69		μg/kg dry	3.69	2.85	1	"	"	"	"		Х
630-20-6	1,1,1,2-Tetrachloroethane	< 3.69		μg/kg dry	3.69	2.76	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 3.69		μg/kg dry	3.69	3.38	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 3.69		μg/kg dry	3.69	2.05	1	"	"	"	"		Х
108-88-3	Toluene	< 3.69		μg/kg dry	3.69	2.34	1	"	"	"	"		Х
87-61-6	1,2,3-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.11	1	"	"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.40	1	"	"	"	"		Х
108-70-3	1,3,5-Trichlorobenzene	< 3.69		μg/kg dry	3.69	3.50	1		"	"	"		
71-55-6	1,1,1-Trichloroethane	< 3.69		μg/kg dry	3.69	2.51	1		"	"	"		Х
79-00-5	1,1,2-Trichloroethane	< 3.69		μg/kg dry	3.69	2.78	1		"	"	"		Х
79-01-6	Trichloroethene	< 3.69		μg/kg dry	3.69	2.48	1		"	"	"		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 3.69		μg/kg dry	3.69	2.82	1	"	u	II	"	"	X
96-18-4	1,2,3-Trichloropropane	< 3.69		μg/kg dry	3.69	3.24	1	"	"	"	"		Х
95-63-6	1,2,4-Trimethylbenzene	< 3.69		μg/kg dry	3.69	3.12	1	"	"	"	"		Х
108-67-8	1,3,5-Trimethylbenzene	< 3.69		μg/kg dry	3.69	3.13	1	"	"	"	"		Х
75-01-4	Vinyl chloride	< 3.69		μg/kg dry	3.69	2.25	1	"	"	"	"		Х
179601-23-1	m,p-Xylene	< 7.37		μg/kg dry	7.37	5.03	1	"	"	"	"		Х
95-47-6	o-Xylene	< 3.69		μg/kg dry	3.69	2.69	1	"	"	"	"		Х
109-99-9	Tetrahydrofuran	< 7.37		μg/kg dry	7.37	1.86	1	"	"	"	"		
60-29-7	Ethyl ether	< 3.69		μg/kg dry	3.69	1.94	1	"	"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 3.69		μg/kg dry	3.69	2.91	1	"	•	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 3.69		μg/kg dry	3.69	2.43	1	"	•	"	"	"	
108-20-3	Di-isopropyl ether	< 3.69		μg/kg dry	3.69	2.63	1	"	•	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 73.7		μg/kg dry	73.7	19.8	1	m .	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 73.7		μg/kg dry	73.7	22.9	1		"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 18.4		μg/kg dry	18.4	2.72	1	"	u	"	"	"	X
64-17-5	Ethanol	< 737		μg/kg dry	737	45.7	1	"	"	"			

Surrogate recoveries:

TrenchC ₂ SC59391-				Client Pr 6013973	_		<u>Matrix</u> Soil		ection Date 3-Sep-20 09			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GCMS											
Semivola	tile Organic Compounds		R01										
131-11-3	Dimethyl phthalate	< 1760		μg/kg dry	1760	198	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Χ
105-67-9	2,4-Dimethylphenol	< 1760		μg/kg dry	1760	139	1	"	II .	"	"	"	X
84-74-2	Di-n-butyl phthalate	< 1760		μg/kg dry	1760	188	1	"	n n	"	"	"	X
534-52-1	4,6-Dinitro-2-methylphenol	< 1760		μg/kg dry	1760	252	1	"	n n	"	"	"	X
51-28-5	2,4-Dinitrophenol	< 1760		μg/kg dry	1760	182	1	"	n n	"	"	"	X
121-14-2	2,4-Dinitrotoluene	< 890		μg/kg dry	890	213	1	"	n n	"	"	"	X
606-20-2	2,6-Dinitrotoluene	< 890		μg/kg dry	890	182	1	"	"	"	"	"	X
117-84-0	Di-n-octyl phthalate	< 1760		μg/kg dry	1760	262	1	"	"	"	"	"	X
206-44-0	Fluoranthene	6,580		μg/kg dry	355	208	1	"	"	"	"	"	X
86-73-7	Fluorene	< 355		μg/kg dry	355	230	1	"	"	"	"	"	X
118-74-1	Hexachlorobenzene	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 890		μg/kg dry	890	224	1	"	"	"	"	"	Χ
67-72-1	Hexachloroethane	< 890		μg/kg dry	890	201	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	7,620		μg/kg dry	355	243	1	"	"	"	"	"	X
78-59-1	Isophorone	< 890		μg/kg dry	890	137	1	"	"	"	"	"	X
91-57-6	2-Methylnaphthalene	< 355		μg/kg dry	355	249	1	"	II .	"	"	"	Х
95-48-7	2-Methylphenol	< 1760		μg/kg dry	1760	141	1	"	n n	"	"	"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	< 1760		μg/kg dry	1760	138	1	u	W .	"	"	"	Х
91-20-3	Naphthalene	< 355		μg/kg dry	355	205	1	"	"	"		"	X
88-74-4	2-Nitroaniline	< 1760		μg/kg dry	1760	159	1	"	"	"	"	"	X
99-09-2	3-Nitroaniline	< 1760		μg/kg dry	1760	163	1	"	II .	"	"	"	Х
100-01-6	4-Nitroaniline	< 890		μg/kg dry	890	234	1	"	II .	"	"	"	Х
98-95-3	Nitrobenzene	< 890		μg/kg dry	890	206	1	"	"	"	"	"	X
88-75-5	2-Nitrophenol	< 890		μg/kg dry	890	156	1	"	"	"	"	"	X
100-02-7	4-Nitrophenol	< 7030		μg/kg dry	7030	234	1	"	"	u u	"	"	Х
62-75-9	N-Nitrosodimethylamine	< 890		μg/kg dry	890	116	1	"	"	"	"	"	X
621-64-7	N-Nitrosodi-n-propylamine	< 890		μg/kg dry	890	156	1	"	"	"	"	"	X
86-30-6	N-Nitrosodiphenylamine	< 1760		μg/kg dry	1760	179	1	"	"	"	"	"	X
87-86-5	Pentachlorophenol	< 1760		μg/kg dry	1760	209	1	"	II .	"	"	"	X
85-01-8	Phenanthrene	1,720		μg/kg dry	355	201	1	"	II .	"	"	"	X
108-95-2	Phenol	< 1760		μg/kg dry	1760	178	1	"	"	"	"	"	X
129-00-0	Pyrene	6,930		μg/kg dry	355	196	1	"	II .	"	"	"	X
110-86-1	Pyridine	< 1760		μg/kg dry	1760	416	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1760		μg/kg dry	1760	216	1	"	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	< 355		μg/kg dry	355	196	1	п	u u	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 1760		μg/kg dry	1760	182	1	"	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	< 890		μg/kg dry	890	217	1	"	"	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	< 1760		μg/kg dry	1760	187	1	"	"	"	"	"	Χ
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1760		μg/kg dry	1760	209	1	u	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	52			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	89			30-13	0 %		"	"	"	"		

TrenchC_ SC59391-				Client P 6013973			<u>Matrix</u> Soil	'	-Sep-20 09			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolati	ile Organic Compounds by	GCMS											
Semivolat	tile Organic Compounds		R01										
4165-60-0	Nitrobenzene-d5	89			30-13	80 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800)
4165-62-2	Phenol-d5	89			30-13	80 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	78			30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	73			30-13	80 %		"	"	"	"	"	
Extractabl	le Petroleum Hydrocarbon	s											
	nting by GC by method SW846 3546		R01										
	Total Petroleum Hydrocarbons	1,220		mg/kg dry	27.3	22.8	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	;
Surrogate i	recoveries:												
84-15-1	o-Terphenyl	80			40-14	10 %		"	"	"		"	
3386-33-2	1-Chlorooctadecane	219	S02		40-14	10 %		"	"	"			
	als by EPA 6000/7000 Serie by method SW846 3050E												
7440-22-4	Silver	< 3.45		mg/kg dry	3.45	0.186	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	1 X
7440-38-2	Arsenic	11.1		mg/kg dry	1.72	0.218	1	"	"	23-Sep-20	"	"	X
7440-39-3	Barium	38.4		mg/kg dry	1.15	0.136	1	"	"	"		"	X
7440-43-9	Cadmium	< 0.575		mg/kg dry	0.575	0.0298	1	"	"	"	"	"	X
7440-47-3	Chromium	10.1		mg/kg dry	1.15	0.153	1	"	"	"	"	"	Х
7439-97-6	Mercury	0.0870		mg/kg dry	0.0306	0.0085	1	SW846 7471B	"	29-Sep-20	edt	2001785	5 X
<u>Prepared</u>	by method SW846 3050E	<u>3</u>											
7439-92-1	Lead	44.2		mg/kg dry	1.72	0.244	1	SW846 6010C	"	28-Sep-20	PMH/ED	Γ2001784	1 X
7782-49-2	Selenium	< 1.72		mg/kg dry	1.72	0.329	1	"	"	"	"	"	X
7704-34-9	Sulfur	318		mg/kg dry	28.7	1.97	1	"	"	23-Sep-20	"	"	
General C	hemistry Parameters												
	% Solids	93.7		%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790)
	cted Analyses by method 7.3.3												
Analysis pe	erformed by Eurofins TestAn	ierica - Buffalo	o - 2337										
	Cyanide, Reactive	< 10		mg/kg	10	10	1	SW846 9012_ReactiveC	27-Sep-20 09:10	28-Sep-20 16:42	2337	551420	
								N					

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 33 of 78

mg/kg

10

10

1

Sulfide, Reactive

< 10

HDDB_5- SC59391-				Client Pt 6013973			<u>Matrix</u> Soil		ection Date 3-Sep-20 11			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared 78-93-3	by method SW846 5035A			ua/ka da	68.3	<u>Init</u> 15.6	ial weight: 50		22 Can 20	02 Can 20	DDP	2004942	v
	2-Butanone (MEK)	< 00.3 L)	μg/kg dry	00.3	15.0	50	SW846 8260C	23-Sep-20	23-Sep-20	סטפ	2001812	
Surrogate i													
460-00-4	4-Bromofluorobenzene	97			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	110			70-13			"					
17060-07-0	1,2-Dichloroethane-d4	113			70-13			"	"	"			
1868-53-7	Dibromofluoromethane	104			70-13	0 %		"	"	"	"	"	
	rganic Compounds by SW by method SW846 5035A		IS1			Init	ial weight:	9.45 g					
76-13-1	1,1,2-Trichlorotrifluoroetha	< 2.97		μg/kg dry	2.97	1.94	1	SW846 8260C	28-Sep-20	28-Sep-20	DDP	2001826	Х
	ne (Freon 113)							LLS	•				
67-64-1	Acetone	< 29.7		µg/kg dry	29.7	6.66	1	II .	II	"	"	"	Χ
107-13-1	Acrylonitrile	< 2.97		μg/kg dry	2.97	1.78	1	"	"	"	"		X
71-43-2	Benzene	< 2.97		μg/kg dry	2.97	1.99	1	"	"	II .	"	"	Х
108-86-1	Bromobenzene	< 2.97		μg/kg dry	2.97	1.98	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 2.97		μg/kg dry	2.97	1.69	1	"	"	II .	"	"	Χ
75-27-4	Bromodichloromethane	< 2.97		μg/kg dry	2.97	2.18	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 2.97		μg/kg dry	2.97	2.27	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 5.95		μg/kg dry	5.95	0.97	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 5.95		μg/kg dry	5.95	3.19	1	"	"	"	"	"	X
135-98-8	sec-Butylbenzene	< 2.97		μg/kg dry	2.97	2.40	1	"	II .	II .	"	"	X
98-06-6	tert-Butylbenzene	< 2.97		μg/kg dry	2.97	2.34	1	"	"	"	"	"	X
75-15-0	Carbon disulfide	< 5.95		μg/kg dry	5.95	2.09	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 2.97		μg/kg dry	2.97	1.87	1	"	n n	"	"	"	Χ
108-90-7	Chlorobenzene	< 2.97		μg/kg dry	2.97	2.18	1	"	"	"	"		Χ
75-00-3	Chloroethane	< 5.95		μg/kg dry	5.95	2.18	1	"	"	"	"	"	X
67-66-3	Chloroform	< 2.97		μg/kg dry	2.97	2.00	1	"	"	"	"		Х
74-87-3	Chloromethane	< 5.95		μg/kg dry	5.95	2.28	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 2.97		μg/kg dry	2.97	2.37	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 2.97		μg/kg dry	2.97	2.58	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 5.95		μg/kg dry	5.95	2.52	1	"	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 2.97		μg/kg dry	2.97	1.97	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 2.97		μg/kg dry	2.97	2.14	1	"	"	"	"	"	X
74-95-3	Dibromomethane	< 2.97		μg/kg dry	2.97	1.75	1	n	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.76	1	n	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.38	1	u u	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 2.97		μg/kg dry	2.97	2.82	1	II .	n	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 5.95		μg/kg dry	5.95	1.59	1	"	II	H	"	"	Х
75-34-3	1,1-Dichloroethane	< 2.97		μg/kg dry	2.97	2.02	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 2.97		μg/kg dry	2.97	2.00	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 2.97		μg/kg dry	2.97	1.82	1	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 2.97		μg/kg dry	2.97	1.72	1	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 2.97		μg/kg dry	2.97	1.85	1	m .	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 2.97		μg/kg dry	2.97	1.97	1	II .	u	"	"	"	Χ
142-28-9	1,3-Dichloropropane	< 2.97		μg/kg dry	2.97	2.27	1	"	"	"		"	Х

Ethanol

< 595

64-17-5

36.9

1

595

μg/kg dry

38.5

1

367

µg/kg dry

Diethyl phthalate

< 367

84-66-2

Х

Client Project # 60139732*2900

Matrix Soil Collection Date/Time 18-Sep-20 11:10 Received 21-Sep-20

SC59391	-05) Sep 20 11			5 c p 20	
CAS No.	Analyte(s)	Result	Flag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by (GCMS										
Semivola	tile Organic Compounds											
131-11-3	Dimethyl phthalate	< 367	μg/kg dry	367	41.3	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Χ
105-67-9	2,4-Dimethylphenol	< 367	μg/kg dry	367	29.0	1		"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 367	μg/kg dry	367	39.3	1		"	"	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	< 367	μg/kg dry	367	52.6	1		"	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	< 367	μg/kg dry	367	38.1	1		"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 186	μg/kg dry	186	44.5	1		"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 186	μg/kg dry	186	37.9	1		"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 367	μg/kg dry	367	54.6	1	"	"	u	"	"	Χ
206-44-0	Fluoranthene	< 74.2	μg/kg dry	74.2	43.5	1		"	"	"	"	Χ
86-73-7	Fluorene	< 74.2	μg/kg dry	74.2	48.0	1		"	"	"	"	Χ
118-74-1	Hexachlorobenzene	< 186	μg/kg dry	186	46.7	1	"	"	u	"	"	Χ
87-68-3	Hexachlorobutadiene	< 186	μg/kg dry	186	46.7	1	"	"	u	"	"	Χ
77-47-4	Hexachlorocyclopentadien	< 186	μg/kg dry	186	46.9	1	"	"	u	"	"	Χ
67 70 1	e Llavachlaracthana	~ 10C	ualka dar	106	42.0	4				,		V
67-72-1	Hexachloroethane	< 186	μg/kg dry	186	42.0	1					"	X
193-39-5	Indeno (1,2,3-cd) pyrene	151	μg/kg dry	74.2	50.7	1						X
78-59-1	Isophorone	< 186	μg/kg dry	186	28.6	1						X
91-57-6	2-Methylnaphthalene	< 74.2	μg/kg dry	74.2	52.0	1						X
95-48-7	2-Methylphenol	< 367	μg/kg dry	367	29.5	1					"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	< 367	μg/kg dry	367	28.8	1						Х
91-20-3	Naphthalene	< 74.2	μg/kg dry	74.2	42.8	1		"	"	"	"	Χ
88-74-4	2-Nitroaniline	< 367	μg/kg dry	367	33.3	1		"	"	"	"	Χ
99-09-2	3-Nitroaniline	< 367	μg/kg dry	367	33.9	1		"	u	"	"	Х
100-01-6	4-Nitroaniline	< 186	μg/kg dry	186	49.0	1		"	u	"	"	Х
98-95-3	Nitrobenzene	< 186	μg/kg dry	186	43.0	1		"	u	"	"	Х
88-75-5	2-Nitrophenol	< 186	μg/kg dry	186	32.5	1	"	"	"	"		Х
100-02-7	4-Nitrophenol	< 1470	μg/kg dry	1470	48.9	1	"	"	"	"		Х
62-75-9	N-Nitrosodimethylamine	< 186	μg/kg dry	186	24.3	1	"	"	"	"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 186	μg/kg dry	186	32.5	1	"	"	"	"		Х
86-30-6	N-Nitrosodiphenylamine	< 367	μg/kg dry	367	37.4	1	"	"	"	"		Х
87-86-5	Pentachlorophenol	< 367	μg/kg dry	367	43.7	1	"	"	"	"		Х
85-01-8	Phenanthrene	< 74.2	μg/kg dry	74.2	42.1	1	"	"	"	"		Х
108-95-2	Phenol	< 367	μg/kg dry	367	37.2	1	"	"	"	"		Х
129-00-0	Pyrene	< 74.2	μg/kg dry	74.2	41.0	1	"	"	"	"		Х
110-86-1	Pyridine	< 367	μg/kg dry	367	86.9	1	"	"	u	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 367	μg/kg dry	367	45.2	1		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 74.2	μg/kg dry	74.2	41.0	1		"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 367	μg/kg dry	367	37.9	1	ıı .	п	u u	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 186	μg/kg dry	186	45.4	1	ıı .	п	u u	"	"	Х
82-68-8	Pentachloronitrobenzene	< 367	μg/kg dry	367	39.1	1	ıı .	п	"	"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 367	μg/kg dry	367	43.7	1	"	u	"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	52		30-13	80 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	86		30-13	80 %		"	"	"	"	"	

Sample Io HDDB_5 SC59391-			<u>Client P</u> 6013973	_		<u>Matrix</u> Soil	<u></u>	ection Date S-Sep-20 11			ceived Sep-20	
CAS No.	Analyte(s)	Result Fla	ig Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Ratch	Cert.
	• • •		-5		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	Tremon reg.	170p	111111111111111111111111111111111111111	111111951	2	
	ile Organic Compounds by C	GCMS										
	tile Organic Compounds	7.5		20.40			0141040.00700			5	0004000	
4165-60-0	Nitrobenzene-d5	75		30-13			SW846 8270D	22-Sep-20	22-Sep-20	BJJ "	2001800	
4165-62-2	Phenol-d5	90		30-13			"	"	"	•	•	
1718-51-0	Terphenyl-dl4	71		30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	66		30-13	80 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbons											
	nting by GC by method SW846 3546											
	Total Petroleum Hydrocarbons	39.9	mg/kg dry	14.7	12.3	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	80		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	94		40-14	10 %			"	"	"		
	als by EPA 6000/7000 Series by method SW846 3050B	Methods										
7440-22-4	Silver	< 3.58	mg/kg dry	3.58	0.193	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	7.62	mg/kg dry	1.79	0.227	1		,	23-Sep-20	"	"	Х
7440-39-3	Barium	25.5	mg/kg dry	1.19	0.141	1	"	"	,		"	Х
7440-43-9	Cadmium	< 0.597	mg/kg dry	0.597	0.0309	1	"	"	"			Х
7440-47-3	Chromium	8.84	mg/kg dry	1.19	0.159	1			"			X
7439-97-6	Mercury	< 0.0367	mg/kg dry	0.0367	0.0102	1	SW846 7471B	"	29-Sep-20	edt	2001785	
	by method SW846 3050B	· 0.0301	mg/kg dry	0.0007	0.0102	'	OW040 747 1B		29-0cp-20	cut	2001703	^
7439-92-1	Lead	5.21	mg/kg dry	1.79	0.253	1	SW846 6010C	"	28-Sep-20	PMH/ED1	2001784	Х
7782-49-2	Selenium	< 1.79	mg/kg dry	1.79	0.341	1			,			Х
7704-34-9	Sulfur	60.9	mg/kg dry	29.8	2.04	1		"	23-Sep-20	"	"	
Conoral C	Themistry Parameters											
General	% Solids	89.0	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	octed Analyses by method 7.3.3											
Analysis pe	erformed by Eurofins TestAme.	rica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:43	2337	551420	

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 38 of 78

mg/kg

10

10

1

Prepared by method 7.3.4

Sulfide, Reactive

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

HDDA_5- SC59391-				Client Pr 6013973			<u>Matrix</u> Soil		ection Date 3-Sep-20 10			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared 78-93-3	by method SW846 5035A	-			05.4		ial weight:		00.000	00.000	DDD	0004040	
	2-Butanone (MEK)	< 65.1)	μg/kg dry	65.1	14.9	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	
Surrogate i													
460-00-4	4-Bromofluorobenzene	97			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	112			70-13			"					
17060-07-0	1,2-Dichloroethane-d4	112			70-13								
1868-53-7	Dibromofluoromethane	105	104		70-13	80 %		"	"	"			
	rganic Compounds by SW by method SW846 5035A		IS1			Init	ial weight:	8 48 a					
76-13-1	1.1.2-Trichlorotrifluoroetha	< 3.16		μg/kg dry	3.16	2.06	1	SW846 8260C	28-Sep-20	28-Sep-20	DDP	2001826	X
	ne (Freon 113)	0.10		F9/19 41)	00	2.00	·	LLS	20 00p 20	20 00p 20	55.	200.020	
67-64-1	Acetone	< 31.6		μg/kg dry	31.6	7.07	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 3.16		μg/kg dry	3.16	1.89	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 3.16		μg/kg dry	3.16	2.11	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 3.16		μg/kg dry	3.16	2.10	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 3.16		μg/kg dry	3.16	1.79	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 3.16		μg/kg dry	3.16	2.32	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 3.16		μg/kg dry	3.16	2.41	1	"	"	"	"	"	X
74-83-9	Bromomethane	< 6.31		μg/kg dry	6.31	1.03	1	"	"	"	"	"	X
104-51-8	n-Butylbenzene	< 6.31		μg/kg dry	6.31	3.38	1	"	"	"	"	"	X
135-98-8	sec-Butylbenzene	< 3.16		μg/kg dry	3.16	2.54	1	"	"	"	"	"	X
98-06-6	tert-Butylbenzene	< 3.16		μg/kg dry	3.16	2.49	1	"	"	"	"	"	X
75-15-0	Carbon disulfide	< 6.31		μg/kg dry	6.31	2.21	1	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 3.16		μg/kg dry	3.16	1.99	1	"	"	"	"	"	X
108-90-7	Chlorobenzene	< 3.16		μg/kg dry	3.16	2.31	1	"	"	"	"	"	X
75-00-3	Chloroethane	< 6.31		μg/kg dry	6.31	2.32	1	"	"	"	"	"	X
67-66-3	Chloroform	< 3.16		μg/kg dry	3.16	2.12	1	"	"	"	"	"	X
74-87-3	Chloromethane	< 6.31		μg/kg dry	6.31	2.42	1	"	"	"	"	"	X
95-49-8	2-Chlorotoluene	< 3.16		μg/kg dry	3.16	2.51	1	"	"	"	"	"	X
106-43-4	4-Chlorotoluene	< 3.16		μg/kg dry	3.16	2.74	1	"	"	"	"	"	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 6.31		μg/kg dry	6.31	2.68	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 3.16		μg/kg dry	3.16	2.09	1	"	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	< 3.16		μg/kg dry	3.16	2.27	1	"	n n	"	"	"	Χ
74-95-3	Dibromomethane	< 3.16		μg/kg dry	3.16	1.86	1	II	"	n n	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.93	1	u.	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.53	1	u.	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 3.16		μg/kg dry	3.16	2.99	1	II	"	n n	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 6.31		μg/kg dry	6.31	1.69	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.16		μg/kg dry	3.16	2.14	1	u.	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 3.16		μg/kg dry	3.16	2.13	1	u.	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 3.16		μg/kg dry	3.16	1.93	1	II	"	n n	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 3.16		μg/kg dry	3.16	1.82	1	II	"	n n	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 3.16		μg/kg dry	3.16	1.96	1	II	"	n n	"	"	Χ
78-87-5	1,2-Dichloropropane	< 3.16		μg/kg dry	3.16	2.09	1	u	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	< 3.16		μg/kg dry	3.16	2.41	1	"	"	"	"	"	Χ

39.1

1

631

μg/kg dry

< 631

64-17-5

Ethanol

Surrogate recoveries:

36 4

1

347

µg/kg dry

Diethyl phthalate

< 347

84-66-2

Х

30-130 %

30-130 %

176

347

347

42.9

36.9

41.3

1

1

1

Χ

Χ

Χ

μg/kg dry

μg/kg dry

μg/kg dry

88-06-2

82-68-8

95-94-3

321-60-8

367-12-4

Surrogate recoveries:

2,4,6-Trichlorophenol

2-Fluorobiphenyl

2-Fluorophenol

Pentachloronitrobenzene

1,2,4,5-Tetrachlorobenzen

< 176

< 347

< 347

49

76

Sample Id	dentification i-10		Client P			Matrix	·	ection Date			ceived	
SC59391			6013973	32*2900		Soil	18	8-Sep-20 10):40	21-	Sep-20	
CAS No.	Analyte(s)	Result Fla	g Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS										
Semivola	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	74		30-13	30 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	82		30-13	30 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	74		30-13	30 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	60		30-13	30 %		"	"	"	"	"	
Extractab	le Petroleum Hydrocarbons	3										
Fingerprir	nting by GC											
<u>Prepared</u>	by method SW846 3546											
	Total Petroleum Hydrocarbons	26.2	mg/kg dry	13.7	11.5	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate	recoveries:											
84-15-1	o-Terphenyl	78		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	89		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Series by method SW846 3050E											
7440-22-4	Silver	< 3.33	mg/kg dry	3.33	0.180	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	9.30	mg/kg dry	1.66	0.211	1	"	"	23-Sep-20	"	"	Х
7440-39-3	Barium	45.9	mg/kg dry	1.11	0.131	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.555	mg/kg dry	0.555	0.0287	1	"	"	"	"	"	Х
7440-47-3	Chromium	11.7	mg/kg dry	1.11	0.148	1	"	"	"	"	"	Х
7439-97-6	Mercury	0.0417	mg/kg dry	0.0310	0.0086	1	SW846 7471B	"	29-Sep-20	edt	2001785	X
Prepared	by method SW846 3050B	<u> </u>										
7439-92-1	Lead	39.2	mg/kg dry	1.66	0.235	1	SW846 6010C	u	28-Sep-20	PMH/ED	Г2001784	Χ
7782-49-2	Selenium	< 1.66	mg/kg dry	1.66	0.317	1	"	"	"	"	"	Χ
7704-34-9	Sulfur	158	mg/kg dry	27.7	1.90	1	"	"	23-Sep-20	"	"	
General C	Chemistry Parameters											
	% Solids	93.4	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	octed Analyses by method 7.3.3											
	erformed by Eurofins TestAm	erica - Buffalo - 2337										
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC	-	28-Sep-20 16:44	2337	551420	
Prepared	by method 7.3.4						N					

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 43 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

HDDC_5 SC59391-				Client Pr 6013973	-		<u>Matrix</u> Soil		ection Date 3-Sep-20 11			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
-	by method SW846 5035A	Soil (high level)				<u>Init</u>	ial weight:	<u>25.79 g</u>					
78-93-3	2-Butanone (MEK)	< 86.2 D		μg/kg dry	86.2	19.7	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	X
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	0 %		"	n n	"	"	"	
2037-26-5	Toluene-d8	110			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	n n	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		"	"	"	"	"	
Volatile O	rganic Compounds by SW	846 8260	IS1										
Prepared	by method SW846 5035A	Soil (low level)				<u>Init</u>	ial weight:	8.03 <u>g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.66		μg/kg dry	3.66	2.39	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	X
67-64-1	Acetone	< 36.6		μg/kg dry	36.6	8.21	1	"	n n	"	"	"	Х
107-13-1	Acrylonitrile	< 3.66		μg/kg dry	3.66	2.20	1	"	u u	u u	"	"	X
71-43-2	Benzene	< 3.66		μg/kg dry	3.66	2.45	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 3.66		μg/kg dry	3.66	2.44	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 3.66		μg/kg dry	3.66	2.08	1	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 3.66		μg/kg dry	3.66	2.69	1	"	"	"	"	"	X
75-25-2	Bromoform	< 3.66		μg/kg dry	3.66	2.80	1	"	"	"	"		Х
74-83-9	Bromomethane	< 7.33		μg/kg dry	7.33	1.19	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 7.33		μg/kg dry	7.33	3.93	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 3.66		μg/kg dry	3.66	2.95	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 3.66		μg/kg dry	3.66	2.89	1	"	n n	"	"	"	Х
75-15-0	Carbon disulfide	< 7.33		μg/kg dry	7.33	2.57	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 3.66		μg/kg dry	3.66	2.31	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 3.66		μg/kg dry	3.66	2.68	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 7.33		μg/kg dry	7.33	2.69	1	"	"	"	"		Х
67-66-3	Chloroform	< 3.66		μg/kg dry	3.66	2.46	1	"	"	"	"		Х
74-87-3	Chloromethane	< 7.33		μg/kg dry	7.33	2.81	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 3.66		μg/kg dry	3.66	2.92	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 3.66		μg/kg dry	3.66	3.18	1	"	"	"	"	"	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 7.33		μg/kg dry	7.33	3.11	1	"	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 3.66		μg/kg dry	3.66	2.43	1	"	u u	u u	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	< 3.66		μg/kg dry	3.66	2.63	1	"	"	"	"	"	X
74-95-3	Dibromomethane	< 3.66		μg/kg dry	3.66	2.15	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.66		μg/kg dry	3.66	3.40	1	II .	"	u u	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.66		μg/kg dry	3.66	2.94	1	"	u u	u u	"	"	X
106-46-7	1,4-Dichlorobenzene	< 3.66		μg/kg dry	3.66	3.47	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.33		μg/kg dry	7.33	1.96	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.66		μg/kg dry	3.66	2.48	1	II .	"	u u	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.66		μg/kg dry	3.66	2.47	1	II .	"	u u	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.66		μg/kg dry	3.66	2.24	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.66		μg/kg dry	3.66	2.12	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.66		μg/kg dry	3.66	2.28	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.66		μg/kg dry	3.66	2.43	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.66		μg/kg dry	3.66	2.80	1	"	"				Х

Ethanol

< 733

64-17-5

45.4

1

733

μg/kg dry

39 9

1

381

µg/kg dry

Diethyl phthalate

< 381

84-66-2

Х

Client Project # 60139732*2900

Matrix Soil Collection Date/Time 18-Sep-20 11:38 Received 21-Sep-20

SC59391	-07								1			1	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by C	GCMS											
Semivola	tile Organic Compounds												
131-11-3	Dimethyl phthalate	< 381		μg/kg dry	381	42.8	1	SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	Χ
105-67-9	2,4-Dimethylphenol	< 381		μg/kg dry	381	30.1	1	"	"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 381		μg/kg dry	381	40.7	1	"	"	"	"		Χ
534-52-1	4,6-Dinitro-2-methylphenol	< 381		μg/kg dry	381	54.5	1	"	"	"	"		Χ
51-28-5	2,4-Dinitrophenol	< 381		μg/kg dry	381	39.4	1	"	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 193		μg/kg dry	193	46.1	1	"	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 193		μg/kg dry	193	39.3	1	"	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 381		μg/kg dry	381	56.6	1	"	"	"	"		Χ
206-44-0	Fluoranthene	< 76.9		μg/kg dry	76.9	45.1	1	"	"	"	"		Χ
86-73-7	Fluorene	< 76.9		μg/kg dry	76.9	49.7	1	"	"	"	"		Χ
118-74-1	Hexachlorobenzene	< 193		μg/kg dry	193	48.4	1	"	u	u u	"	"	Χ
87-68-3	Hexachlorobutadiene	< 193		μg/kg dry	193	48.4	1	"	u	u u	"	"	Χ
77-47-4	Hexachlorocyclopentadien	< 193		μg/kg dry	193	48.5	1	"	"	"	"	"	Χ
	е												
67-72-1	Hexachloroethane	< 193		μg/kg dry	193	43.5	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 76.9		μg/kg dry	76.9	52.6	1	"	"	"	"	"	Χ
78-59-1	Isophorone	< 193		μg/kg dry	193	29.6	1	"	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	< 76.9		μg/kg dry	76.9	53.8	1	"	"	"	"	"	Χ
95-48-7	2-Methylphenol	< 381		μg/kg dry	381	30.6	1	"	"	"	"	"	Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 381		μg/kg dry	381	29.9	1	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 76.9		μg/kg dry	76.9	44.4	1	"	"	"	"		Х
88-74-4	2-Nitroaniline	< 381		μg/kg dry	381	34.5	1	"	"	"	"		Х
99-09-2	3-Nitroaniline	< 381		μg/kg dry	381	35.2	1	"	"	"		"	Х
100-01-6	4-Nitroaniline	< 193		μg/kg dry	193	50.7	1	"	"	"	"	"	Х
98-95-3	Nitrobenzene	< 193		μg/kg dry	193	44.5	1	"	"	"		"	Х
88-75-5	2-Nitrophenol	< 193		μg/kg dry	193	33.7	1	"	"	"		"	Х
100-02-7	4-Nitrophenol	< 1520		μg/kg dry	1520	50.6	1	"	"		"		Х
62-75-9	N-Nitrosodimethylamine	< 193		μg/kg dry	193	25.1	1	"	"	"		"	Х
621-64-7	N-Nitrosodi-n-propylamine	< 193		μg/kg dry	193	33.7	1	"	"		"		Х
86-30-6	N-Nitrosodiphenylamine	< 381		μg/kg dry	381	38.7	1	"	"		"		Х
87-86-5	Pentachlorophenol	< 381		μg/kg dry	381	45.3	1	"	"	"	"		Х
85-01-8	Phenanthrene	< 76.9		μg/kg dry	76.9	43.6	1	"	"	"	"		Х
108-95-2	Phenol	< 381		μg/kg dry	381	38.5	1	"	"	"	"		Х
129-00-0	Pyrene	< 76.9		μg/kg dry	76.9	42.4	1	"	"	"	"		Х
110-86-1	Pyridine	< 381		µg/kg dry	381	90.1	1	"			"		Х
120-82-1	1,2,4-Trichlorobenzene	< 381		µg/kg dry	381	46.8	1	"			"		Х
90-12-0	1-Methylnaphthalene	< 76.9		µg/kg dry	76.9	42.4	1	"			"		^
95-95-4	2,4,5-Trichlorophenol	< 381		μg/kg dry μg/kg dry	381	39.3	1	"	"			"	Х
88-06-2	2,4,6-Trichlorophenol	< 193		μg/kg dry μg/kg dry	193	47.0	1	"			"	"	X
82-68-8	Pentachloronitrobenzene	< 381		μg/kg dry μg/kg dry	381	40.5	1	"			"	"	X
95-94-3	1,2,4,5-Tetrachlorobenzen	< 381		μg/kg dry μg/kg dry	381	45.3	1		"	"	"	"	X
Surrogate	e recoveries:												
321-60-8	2-Fluorobiphenyl	49			30-13	0 %		"	"	"	"	"	
367-12-4								"			"		
501-12 -4	2-Fluorophenol	77			30-13	U 70							

Sample Id HDDC_5 SC59391-			·	Project # 32*2900		<u>Matrix</u> Soil		ection Date 3-Sep-20 11			ceived Sep-20	
CAS No.	Analyte(s)	Result I	Flag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS										
Semivolat	tile Organic Compounds											
4165-60-0	Nitrobenzene-d5	64		30-13	30 %		SW846 8270D	22-Sep-20	22-Sep-20	BJJ	2001800	
4165-62-2	Phenol-d5	67		30-13	30 %		"	"	u	"	"	
1718-51-0	Terphenyl-dl4	69		30-13	30 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	69		30-13	30 %		"	"	u	"	"	
Extractab	le Petroleum Hydrocarbons											
	nting by GC by method SW846 3546											
riepaieu	Total Petroleum Hydrocarbons	< 15.1	mg/kg dry	15.1	12.7	1	SW846 8100Mod.	22-Sep-20	22-Sep-20	BJJ	2001798	
Surrogate i	recoveries:											
84-15-1	o-Terphenyl	71		40-14	10 %		"	"	"	"	"	
3386-33-2	1-Chlorooctadecane	86		40-14	10 %		"	"	"	"	"	
	als by EPA 6000/7000 Series by method SW846 3050B	Methods										
7440-22-4	Silver	< 3.89	mg/kg dry	3.89	0.210	1	SW846 6010C	22-Sep-20	29-Sep-20	EDT	2001784	Х
7440-38-2	Arsenic	5.98	mg/kg dry	1.95	0.247	1		"	23-Sep-20	"	"	Х
7440-39-3	Barium	20.4	mg/kg dry	1.30	0.153	1	"	"	u	"	"	Х
7440-43-9	Cadmium	< 0.649	mg/kg dry	0.649	0.0336	1	"	"	"	"	"	Χ
7440-47-3	Chromium	7.03	mg/kg dry	1.30	0.173	1	"	"	u	"	"	Х
7439-97-6	Mercury	< 0.0316	mg/kg dry	0.0316	0.0088	1	SW846 7471B	"	29-Sep-20	edt	2001785	Χ
Prepared	by method SW846 3050B											
7439-92-1	Lead	3.36	mg/kg dry	1.95	0.275	1	SW846 6010C	"	28-Sep-20	PMH/ED	Г2001784	Χ
7782-49-2	Selenium	< 1.95	mg/kg dry	1.95	0.371	1	"	"	"	"	"	Х
7704-34-9	Sulfur	83.8	mg/kg dry	32.4	2.22	1	"	"	23-Sep-20	"	"	
General C	hemistry Parameters											
	% Solids	85.0	%			1	SM2540 G (11) Mod.	22-Sep-20	23-Sep-20	EDT	2001790	
	cted Analyses by method 7.3.3											
Analysis pe	erformed by Eurofins TestAme	erica - Buffalo - 2337	7									
	Cyanide, Reactive	< 10	mg/kg	10	10	1	SW846 9012_ReactiveC N	27-Sep-20 09:10	28-Sep-20 16:46	2337	551420	
Prepared	by method 7.3.4						11					

28-Sep-20 14:06

2337 551421

SW846

9034_Reactive

29-Sep-20 15:34 Page 48 of 78

mg/kg

10

10

1

Analysis performed by Eurofins TestAmerica - Buffalo - 2337

< 10

Sulfide, Reactive

Sample Id Trip Blan SC59391-				Client Pr 6013973			<u>Matrix</u> Trip Blar	·	ection Date 3-Sep-20 00			eceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5035A	Soil (high level)				<u>Init</u>	tial weight:	<u>15 g</u>					
78-93-3	2-Butanone (MEK)	< 100 D		μg/kg wet	100	22.8	50	SW846 8260C	23-Sep-20	23-Sep-20	DDP	2001812	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		"	"	u u	"	"	
2037-26-5	Toluene-d8	110			70-13	0 %		"	"	u	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		"	"	u	"	"	
1868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	u	"	"	
	rganic Compounds by SW							_					
	by method SW846 5035A			,,	5.00		tial weight:	_				0004000	
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00		μg/kg wet	5.00	3.26	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	Х
67-64-1	Acetone	< 50.0		μg/kg wet	50.0	11.2	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 5.00		μg/kg wet	5.00	3.00	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 5.00		μg/kg wet	5.00	3.34	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 5.00		μg/kg wet	5.00	3.33	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 5.00		μg/kg wet	5.00	2.84	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 5.00		μg/kg wet	5.00	3.67	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 5.00		μg/kg wet	5.00	3.82	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 10.0		μg/kg wet	10.0	1.63	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 10.0		μg/kg wet	10.0	5.36	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.00		μg/kg wet	5.00	4.03	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.00		μg/kg wet	5.00	3.94	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 10.0		μg/kg wet	10.0	3.51	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.00		μg/kg wet	5.00	3.15	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.00		μg/kg wet	5.00	3.66	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 10.0		μg/kg wet	10.0	3.67	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 5.00		μg/kg wet	5.00	3.36	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 10.0		μg/kg wet	10.0	3.84	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.00		μg/kg wet	5.00	3.98	1		"		"	"	Х
106-43-4	4-Chlorotoluene	< 5.00		μg/kg wet	5.00	4.34	1	"			"		X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0		μg/kg wet	10.0	4.24	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.00		μg/kg wet	5.00	3.31	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00	3.59	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.00		μg/kg wet	5.00	2.94	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.64	1	"	"	u u	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.01	1	n .	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00	4.74	1	"	"	u u	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0	2.68	1	n	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.00		μg/kg wet	5.00	3.39	1	II .	n	u	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.00		μg/kg wet	5.00	3.37	1	II .	n n	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.00		μg/kg wet	5.00	3.06	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	2.89	1	II .	n n	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	3.11	1	II .	n	u	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.00		μg/kg wet	5.00	3.31	1	II .	n	u	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.00		μg/kg wet	5.00	3.82	1	"	"	"	"	"	Х

Trip Blan			<u>Client P</u> 6013973	-		<u>Matrix</u> Trip Blan		ection Date 8-Sep-20 00			ceived Sep-20	
CAS No.	Analyte(s)	Result Flo	ig Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	ganic Compounds											
Volatile Or	ganic Compounds by SW	<u>846 8260</u>					_					
504.00.7	0.0 8: 11	. 5.00	, ,	5.00		tial weight:	_				0004000	,
594-20-7	2,2-Dichloropropane	< 5.00	μg/kg wet	5.00	3.45	1	SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	6 X
563-58-6	1,1-Dichloropropene	< 5.00	μg/kg wet	5.00	3.40	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.00	μg/kg wet	5.00	3.26	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.00	μg/kg wet	5.00	3.80	1	ıı	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.00	μg/kg wet	5.00	3.57	1	ıı	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 10.0	μg/kg wet	10.0	5.03	1	u	u	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0	μg/kg wet	10.0	2.94	1	u	u	"	"	"	Х
98-82-8	Isopropylbenzene	< 5.00	μg/kg wet	5.00	3.78	1	ıı	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	< 5.00	μg/kg wet	5.00	4.91	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 5.00	μg/kg wet	5.00	2.77	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	μg/kg wet	10.0	3.23	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 10.0	μg/kg wet	10.0	2.68	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 5.00	μg/kg wet	5.00	4.52	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 5.00	μg/kg wet	5.00	4.23	1	"	"	"	"	"	Х
100-42-5	Styrene	< 5.00	μg/kg wet	5.00	3.87	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00	μg/kg wet	5.00	3.75	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.00	μg/kg wet	5.00	4.58	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 5.00	μg/kg wet	5.00	2.78	1	"	"	"	"	"	Х
108-88-3	Toluene	< 5.00	μg/kg wet	5.00	3.17	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.22	1	"	u	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.61	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 5.00	μg/kg wet	5.00	4.75	1	"	u u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.00	μg/kg wet	5.00	3.41	1	"	u u	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 5.00	μg/kg wet	5.00	3.77	1	"	u u	"	"	"	Х
79-01-6	Trichloroethene	< 5.00	μg/kg wet	5.00	3.36	1	"	u u	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00	μg/kg wet	5.00	3.82	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 5.00	μg/kg wet	5.00	4.40	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 5.00	μg/kg wet	5.00	4.23	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.00	μg/kg wet	5.00	4.25	1		"	"	"	"	Х
75-01-4	Vinyl chloride	< 5.00	μg/kg wet	5.00	3.05	1	"	u	"	"	"	Х
179601-23-1	m,p-Xylene	< 10.0	μg/kg wet	10.0	6.83	1	"	u	"	"	"	Х
95-47-6	o-Xylene	< 5.00	μg/kg wet	5.00	3.65	1	m .	u	"	"	"	Х
109-99-9	Tetrahydrofuran	< 10.0	μg/kg wet	10.0	2.53	1	ıı .	"	"	"	"	
60-29-7	Ethyl ether	< 5.00	μg/kg wet	5.00	2.63	1	"	"	"	"		Х
994-05-8	Tert-amyl methyl ether	< 5.00	μg/kg wet	5.00	3.95	1	"		"	"	"	
637-92-3	Ethyl tert-butyl ether	< 5.00	μg/kg wet	5.00	3.29	1	"		"	"	"	
108-20-3	Di-isopropyl ether	< 5.00	μg/kg wet	5.00	3.57	1	"	"	"			
75-65-0	Tert-Butanol / butyl alcohol	< 100	μg/kg wet	100	26.8	1				"	"	Х
123-91-1	1,4-Dioxane	< 100	μg/kg wet	100	31.1	1		u	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 25.0	μg/kg wet	25.0	3.69	1	"	u	"		"	X
64-17-5	Ethanol	< 1000	μg/kg wet	1000	62.0	1	"	"				

Surrogate recoveries:

Sample Id Trip Blan SC59391-					Project # 32*2900		<u>Matrix</u> Trip Blar		ection Date 3-Sep-20 00			Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	rganic Compounds by SV	N846 8260											
						<u>Init</u>	ial weight:	<u>5 g</u>					
460-00-4	4-Bromofluorobenzene	92			70-130	%		SW846 8260C LLS	28-Sep-20	28-Sep-20	DDP	2001826	
2037-26-5	Toluene-d8	101			70-130) %		"	"	"		"	
17060-07-0	1,2-Dichloroethane-d4	107			70-130	%		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-130) %		m .	"	"	"		

29-Sep-20 15:34 Page 51 of 78

		T1	T	* PD*	Spike	Source	0/BEC	%REC	D.D.C.	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 2001812 - SW846 5035A Soil (high level)										
Blank (2001812-BLK1)					Pre	epared & A	nalyzed: 23-	-Sep-20		
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
Surrogate: 4-Bromofluorobenzene	47.9		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	55.0		μg/l		50.0		110	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.7		μg/l		50.0		111	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		
LCS (2001812-BS1)					Pre	epared & A	nalyzed: 23-	-Sep-20		
2-Butanone (MEK)	24.5	D	μg/l		20.0		122	70-130		
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	55.2		μg/l		50.0		110	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	50.8		μg/l		50.0		102	70-130		
LCS Dup (2001812-BSD1)			13			epared & A	nalyzed: 23-			
2-Butanone (MEK)	25.9	D	μg/l		20.0	oparoa a r	129	70-130	6	30
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	56.4		μg/l		50.0		113	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.4		μg/l		50.0		113	70-130		
Surrogate: Dibromofluoromethane	51.8		μg/l		50.0		104	70-130		
-	00		F3/-		00.0			70 700		
W846 8260C LLS										
Satch 2001826 - SW846 5035A Soil (low level)					_			0 00		
Blank (2001826-BLK1)	. 5.00			5.00	Pre	epared & A	nalyzed: 28-	-Sep-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00		μg/kg wet	5.00						
Acetone	< 50.0 < 5.00		μg/kg wet	50.0 5.00						
Acrylonitrile Benzene	< 5.00		µg/kg wet	5.00						
Bromobenzene	< 5.00		µg/kg wet µg/kg wet	5.00						
Bromochloromethane	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromodichloromethane	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromoform	< 5.00		μg/kg wet μg/kg wet	5.00						
Bromomethane	< 10.0		μg/kg wet μg/kg wet	10.0						
n-Butylbenzene	< 10.0		μg/kg wet	10.0						
sec-Butylbenzene	< 5.00		μg/kg wet	5.00						
tert-Butylbenzene	< 5.00		μg/kg wet	5.00						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.00		μg/kg wet	5.00						
Chlorobenzene	< 5.00		μg/kg wet	5.00						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.00		μg/kg wet	5.00						
Chloromethane	< 10.0		μg/kg wet	10.0						
2-Chlorotoluene	< 5.00		μg/kg wet	5.00						
4-Chlorotoluene	< 5.00		μg/kg wet	5.00						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.00		μg/kg wet	5.00						
1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00						
Dibromomethane	< 5.00		μg/kg wet	5.00						
1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.00		μg/kg wet	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001826 - SW846 5035A Soil (low level)										
Blank (2001826-BLK1)					Pre	epared & Ar	nalyzed: 28-	Sep-20		
1,2-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,1-Dichloroethene	< 5.00		μg/kg wet	5.00						
cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		μg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		μg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
Ethylbenzene	< 5.00		μg/kg wet	5.00						
Hexachlorobutadiene	< 10.0		μg/kg wet	10.0						
2-Hexanone (MBK)	< 10.0		μg/kg wet	10.0						
Isopropylbenzene	< 5.00		μg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		μg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.00		μg/kg wet	5.00						
n-Propylbenzene	< 5.00		μg/kg wet	5.00						
Styrene	< 5.00		μg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
Tetrachloroethene	< 5.00		μg/kg wet	5.00						
Toluene	< 5.00		μg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00						
Trichloroethene	< 5.00		μg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
Vinyl chloride	< 5.00		μg/kg wet	5.00						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.00		μg/kg wet	5.00						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.00		μg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
Di-isopropyl ether	< 5.00		μg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 100		μg/kg wet	100						
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 1000		μg/kg wet	1000						
Surrogate: 4-Bromofluorobenzene	48.8		μg/kg wet		50.0		98	70-130		
Surrogate: Toluene-d8	51.2		μg/kg wet		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.5		μg/kg wet		50.0		105	70-130		

					Spike	Source		%REC		RPD	
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit	

SW846 8260C LLS

atch 2001826 - SW846 5035A Soil (low level)						
Blank (2001826-BLK1)				Prepared	& Analyzed: 28-	-Sep-20
Surrogate: Dibromofluoromethane	51.9		μg/kg wet	50.0	104	70-130
LCS (2001826-BS1)				Prepared	& Analyzed: 28-	-Sep-20
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.1		μg/kg	20.0	100	70-130
Acetone	10.4	QC6	μg/kg	20.0	52	70-130
Acrylonitrile	18.1		μg/kg	20.0	90	70-130
Benzene	19.7		μg/kg	20.0	98	70-130
Bromobenzene	20.3		μg/kg	20.0	101	70-130
Bromochloromethane	20.6		μg/kg	20.0	103	70-130
Bromodichloromethane	20.0		μg/kg	20.0	100	70-130
Bromoform	20.8		μg/kg	20.0	104	70-130
Bromomethane	21.6		μg/kg	20.0	108	70-130
n-Butylbenzene	20.0		μg/kg	20.0	100	70-130
sec-Butylbenzene	20.5		μg/kg	20.0	102	70-130
tert-Butylbenzene	20.4		μg/kg	20.0	102	70-130
Carbon disulfide	20.4		μg/kg μg/kg	20.0	102	70-130
Carbon tetrachloride	20.1		μg/kg μg/kg	20.0	101	70-130
Chlorobenzene	20.5		μg/kg μg/kg	20.0	103	70-130
Chloroethane	103	BsH,		20.0	513	70-130
Chloroethane	103	QC6	μg/kg	20.0	513	70-130
Chloroform	19.5		μg/kg	20.0	98	70-130
Chloromethane	21.9		μg/kg	20.0	109	70-130
2-Chlorotoluene	18.5		μg/kg	20.0	93	70-130
4-Chlorotoluene	19.3		μg/kg	20.0	96	70-130
1,2-Dibromo-3-chloropropane	19.3		μg/kg	20.0	96	70-130
Dibromochloromethane	20.0		μg/kg	20.0	100	70-130
1,2-Dibromoethane (EDB)	20.1		μg/kg	20.0	100	70-130
Dibromomethane	19.1		μg/kg	20.0	96	70-130
1,2-Dichlorobenzene	20.1		μg/kg	20.0	100	70-130
1,3-Dichlorobenzene	20.3		μg/kg	20.0	101	70-130
1,4-Dichlorobenzene	19.5		μg/kg	20.0	97	70-130
Dichlorodifluoromethane (Freon12)	21.6		μg/kg	20.0	108	70-130
1,1-Dichloroethane	19.8		μg/kg	20.0	99	70-130
1,2-Dichloroethane	20.0		μg/kg	20.0	100	70-130
1,1-Dichloroethene	19.7		μg/kg	20.0	99	70-130
cis-1,2-Dichloroethene	19.6		μg/kg	20.0	98	70-130
trans-1,2-Dichloroethene	19.8		μg/kg	20.0	99	70-130
1,2-Dichloropropane	19.3		μg/kg	20.0	97	70-130
1,3-Dichloropropane	19.7		μg/kg	20.0	98	70-130
2,2-Dichloropropane	20.0		μg/kg	20.0	100	70-130
1,1-Dichloropropene	20.0		μg/kg	20.0	100	70-130
cis-1,3-Dichloropropene	19.2		μg/kg	20.0	96	70-130
trans-1,3-Dichloropropene	17.9		μg/kg	20.0	89	70-130
Ethylbenzene	20.2		μg/kg	20.0	101	70-130
Hexachlorobutadiene	20.7		μg/kg	20.0	104	70-130
2-Hexanone (MBK)	19.2		μg/kg	20.0	96	70-130
Isopropylbenzene	20.4		μg/kg	20.0	102	70-130
4-Isopropyltoluene	19.5		μg/kg μg/kg	20.0	98	70-130
Methyl tert-butyl ether	19.5			20.0	96 97	70-130
4-Methyl-2-pentanone (MIBK)	20.0		μg/kg μg/kg	20.0	100	70-130
Methylene chloride	19.6		μg/kg	20.0	98	70-130

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8260C LLS										
atch 2001826 - SW846 5035A Soil (low level)										
LCS (2001826-BS1)					Pre	epared & Ar	nalyzed: 28-	Sep-20		
Naphthalene	19.5		μg/kg		20.0		97	70-130		
n-Propylbenzene	20.1		μg/kg		20.0		101	70-130		
Styrene	19.8		μg/kg		20.0		99	70-130		
1,1,1,2-Tetrachloroethane	20.2		μg/kg		20.0		101	70-130		
1,1,2,2-Tetrachloroethane	20.3		μg/kg		20.0		102	70-130		
Tetrachloroethene	20.4		μg/kg		20.0		102	70-130		
Toluene	19.7		μg/kg		20.0		99	70-130		
1,2,3-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130		
1,2,4-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130		
1,3,5-Trichlorobenzene	19.8		μg/kg		20.0		99	70-130		
1,1,1-Trichloroethane	20.3		μg/kg		20.0		102	70-130		
1,1,2-Trichloroethane	19.9		μg/kg		20.0		99	70-130		
Trichloroethene	20.1		μg/kg		20.0		100	70-130		
Trichlorofluoromethane (Freon 11)	19.0		μg/kg		20.0		95	70-130		
1,2,3-Trichloropropane	19.9		μg/kg		20.0		100	70-130		
1,2,4-Trimethylbenzene	20.1		μg/kg		20.0		100	70-130		
1,3,5-Trimethylbenzene	19.7		μg/kg		20.0		98	70-130		
Vinyl chloride	21.8		μg/kg		20.0		109	70-130		
m,p-Xylene	38.8		μg/kg		40.0		97	70-130		
o-Xylene	20.2		μg/kg		20.0		101	70-130		
Tetrahydrofuran	17.7		μg/kg		20.0		89	70-130		
Ethyl ether	18.6		μg/kg		20.0		93	70-130		
Tert-amyl methyl ether	20.4		μg/kg		20.0		102	70-130		
Ethyl tert-butyl ether	18.9		μg/kg		20.0		95	70-130		
Di-isopropyl ether	19.3		μg/kg		20.0		96	70-130		
Tert-Butanol / butyl alcohol	182		μg/kg		200		91	70-130		
1,4-Dioxane	198		μg/kg		200		99	70-130		
trans-1,4-Dichloro-2-butene	20.0		μg/kg		20.0		100	70-130		
Ethanol	208	QC6	μg/kg		400		52	70-130		
Surrogate: 4-Bromofluorobenzene	51.1		μg/kg wet		50.0		102	70-130		
Surrogate: Toluene-d8	50.6		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.1		µg/kg wet		50.0		100	70-130		
Surrogate: Dibromofluoromethane	50.8		μg/kg wet		50.0		102	70-130		
LCS Dup (2001826-BSD1)			10 0			epared & Ar	nalyzed: 28-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0		μg/kg		20.0		100	70-130	0.4	30
Acetone	10.3	QC6	μg/kg		20.0		52	70-130	0.4	30
Acrylonitrile	20.1		μg/kg		20.0		101	70-130	11	30
Benzene	20.2		μg/kg		20.0		101	70-130	2	30
Bromobenzene	19.1		μg/kg		20.0		95	70-130	6	30
Bromochloromethane	20.8		μg/kg		20.0		104	70-130	1	30
Bromodichloromethane	20.9		μg/kg		20.0		104	70-130	4	30
Bromoform	19.4		μg/kg		20.0		97	70-130	7	30
Bromomethane	22.2		μg/kg		20.0		111	70-130	2	30
n-Butylbenzene	20.8		μg/kg		20.0		104	70-130	4	30
sec-Butylbenzene	19.6		μg/kg		20.0		98	70-130	4	30
tert-Butylbenzene	19.4		μg/kg		20.0		97	70-130	5	30
Carbon disulfide	20.3		μg/kg μg/kg		20.0		102	70-130	1	30
Carbon tetrachloride	19.9		μg/kg		20.0		100	70-130	3	30
	19.2		μg/kg μg/kg		20.0		96	70-130	7	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001826 - SW846 5035A Soil (low level)										
LCS Dup (2001826-BSD1)					Pre	epared & Ar	nalyzed: 28-	-Sep-20		
Chloroethane	103	BsH, QC6	μg/kg		20.0		515	70-130	0.5	30
Chloroform	19.9		μg/kg		20.0		100	70-130	2	30
Chloromethane	22.9		μg/kg		20.0		115	70-130	5	30
2-Chlorotoluene	19.4		μg/kg		20.0		97	70-130	5	30
4-Chlorotoluene	19.5		μg/kg		20.0		98	70-130	1	30
1,2-Dibromo-3-chloropropane	20.4		μg/kg		20.0		102	70-130	5	30
Dibromochloromethane	20.0		μg/kg		20.0		100	70-130	0.2	30
1,2-Dibromoethane (EDB)	20.4		μg/kg		20.0		102	70-130	1	30
Dibromomethane	19.6		μg/kg		20.0		98	70-130	2	30
1,2-Dichlorobenzene	20.1		μg/kg		20.0		101	70-130	0.2	30
1,3-Dichlorobenzene	19.1		μg/kg		20.0		96	70-130	6	30
1,4-Dichlorobenzene	19.8		μg/kg		20.0		99	70-130	2	30
Dichlorodifluoromethane (Freon12)	22.1		μg/kg		20.0		110	70-130	2	30
1,1-Dichloroethane	21.1		μg/kg		20.0		105	70-130	6	30
1,2-Dichloroethane	21.0		μg/kg		20.0		105	70-130	5	30
1,1-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.6	30
cis-1,2-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.9	30
trans-1,2-Dichloroethene	19.8		μg/kg		20.0		99	70-130	0.3	30
1,2-Dichloropropane	20.9		μg/kg		20.0		105	70-130	8	30
1,3-Dichloropropane	20.6		μg/kg		20.0		103	70-130	4	30
2,2-Dichloropropane	20.0		μg/kg		20.0		100	70-130	0.1	30
1,1-Dichloropropene	20.6		μg/kg		20.0		103	70-130	3	30
cis-1,3-Dichloropropene	20.2		μg/kg		20.0		101	70-130	5	30
trans-1,3-Dichloropropene	18.5		μg/kg		20.0		92	70-130	3	30
Ethylbenzene	19.7		μg/kg		20.0		99	70-130	2	30
Hexachlorobutadiene	20.3		μg/kg		20.0		102	70-130	2	30
2-Hexanone (MBK)	21.2		μg/kg		20.0		106	70-130	10	30
Isopropylbenzene	19.6		μg/kg		20.0		98	70-130	4	30
4-Isopropyltoluene	20.2		μg/kg		20.0		101	70-130	3	30
Methyl tert-butyl ether	19.9		μg/kg		20.0		99	70-130	2	30
4-Methyl-2-pentanone (MIBK)	21.3		μg/kg		20.0		107	70-130	7	30
Methylene chloride	18.5		μg/kg		20.0		92	70-130	6	30
Naphthalene	20.4		μg/kg		20.0		102	70-130	4	30
n-Propylbenzene	19.5		μg/kg		20.0		98	70-130	3	30
Styrene	19.2		μg/kg		20.0		96	70-130	3	30
1,1,1,2-Tetrachloroethane	19.1		μg/kg		20.0		95	70-130	6	30
1,1,2,2-Tetrachloroethane	20.1		μg/kg		20.0		101	70-130	0.8	30
Tetrachloroethene	19.5		μg/kg		20.0		98	70-130	4	30
Toluene	19.6		μg/kg		20.0		98	70-130	0.6	30
1,2,3-Trichlorobenzene	19.9		μg/kg		20.0		100	70-130	3	30
1,2,4-Trichlorobenzene	19.5		μg/kg		20.0		98	70-130	0.9	30
1,3,5-Trichlorobenzene	19.4		μg/kg		20.0		97	70-130	2	30
1,1,1-Trichloroethane	20.4		μg/kg		20.0		102	70-130	0.2	30
1,1,2-Trichloroethane	20.5		μg/kg		20.0		102	70-130	3	30
Trichloroethene	20.0		μg/kg		20.0		100	70-130	0.2	30
Trichlorofluoromethane (Freon 11)	18.0		μg/kg		20.0		90	70-130	5	30
1,2,3-Trichloropropane	19.5		μg/kg μg/kg		20.0		97	70-130	2	30
1,2,4-Trimethylbenzene	19.0		μg/kg		20.0		95	70-130	6	30
1,3,5-Trimethylbenzene	18.8		μg/kg μg/kg		20.0		94	70-130	5	30
Vinyl chloride	23.1		µg/kg µg/kg		20.0		115	70-130	6	30

36.8 19.1 19.8 19.6 21.9 20.6 20.9 180 184 20.2	Flag	Units µg/kg µg/kg µg/kg µg/kg	*RDL	40.0 20.0	Source Result	%REC nalyzed: 28- 92 95	Limits Sep-20 70-130 70-130	RPD 5	Limit
19.1 19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg µg/kg		40.0 20.0	epared & Ar	92	70-130		30
19.1 19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg µg/kg		40.0 20.0	epared & Ar	92	70-130		30
19.1 19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg µg/kg		40.0 20.0	epared & Ar	92	70-130		30
19.1 19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg µg/kg		40.0 20.0	, pa. 5 a 6 7 a	92	70-130		30
19.1 19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg µg/kg		20.0					00
19.8 19.6 21.9 20.6 20.9 180		µg/kg µg/kg µg/kg				50		6	30
19.6 21.9 20.6 20.9 180 184		μg/kg μg/kg				99	70-130	11	30
21.9 20.6 20.9 180 184		μg/kg		20.0 20.0		98	70-130 70-130	5	30
20.6 20.9 180 184									
20.9 180 184				20.0		109	70-130	7	30
180 184		μg/kg		20.0		103	70-130	8	30
184		μg/kg "		20.0		105	70-130	8	30
		μg/kg 		200		90	70-130	1	30
20.2		µg/kg		200		92	70-130	7	30
		µg/kg		20.0		101	70-130	1	30
294	QC6	μg/kg		400		73	70-130	34	30
50.2		μg/kg wet		50.0		100	70-130		
51.2		μg/kg wet		50.0		102	70-130		
52.4		μg/kg wet		50.0		105	70-130		
50.0		μg/kg wet		50.0		100	70-130		
				Pre	epared & Ar	nalyzed: 28-	Sep-20		
4.74		ua/ka							
	QC6								
4.60									
4.08		μg/kg		5.00		82	0-200		
4.27		μg/kg		5.00		85	0-200		
6.73		µg/kg		5.00		135	0-200		
4.85		μg/kg		5.00		97	0-200		
4.88		μg/kg		5.00		98	0-200		
4.29		μg/kg		5.00		86	0-200		
4.13		μg/kg		5.00		83	0-200		
4.28		μg/kg		5.00		86	0-200		
3.96		μg/kg		5.00		79	0-200		
4.44		μg/kg		5.00		89	0-200		
4.82		μg/kg		5.00		96	0-200		
4.48				5.00		90	0-200		
	52.4 50.0 4.74 14.4 5.71 4.39 4.01 4.64 4.10 4.53 4.63 4.01 3.71 4.60 4.08 4.27 6.73 4.85 4.88 4.29 4.13 4.28 3.96 4.44	52.4 50.0 4.74 14.4 QC6 5.71 4.39 4.01 4.49 4.64 4.10 4.53 4.63 4.01 3.71 4.60 4.08 4.27 6.73 4.85 4.88 4.29 4.13 4.28 3.96 4.44 4.82 4.48 4.17 4.53 3.81 4.98 4.77 4.53 4.56 4.73	52.4 µg/kg wet 50.0 µg/kg wet 50.0 µg/kg wet 4.74 µg/kg 14.4 QC6 µg/kg 5.71 µg/kg 4.39 µg/kg 4.01 µg/kg 4.64 µg/kg 4.10 µg/kg 4.53 µg/kg 4.63 µg/kg 4.63 µg/kg 4.01 µg/kg 4.60 µg/kg 4.01 µg/kg 4.85 µg/kg 4.27 µg/kg 6.73 µg/kg 4.27 µg/kg 4.28 µg/kg 4.29 µg/kg 4.13 µg/kg 4.28 µg/kg 4.29 µg/kg 4.13 µg/kg 4.28 µg/kg 4.29 µg/kg 4.14 µg/kg 4.15 µg/kg 4.16 µg/kg 4.17 µg/kg 4.18 µg/kg 4.29 µg/kg 4.11 µg/kg 4.29 µg/kg 4.13 µg/kg 4.29 µg/kg 4.13 µg/kg 4.29 µg/kg 4.11 µg/kg 4.28 µg/kg 4.29 µg/kg 4.11 µg/kg 4.28 µg/kg 4.29 µg/kg 4.11 µg/kg 4.28 µg/kg 4.11 µg/kg 4.29 µg/kg 4.44 µg/kg 4.53 µg/kg 4.77 µg/kg 4.53 µg/kg 4.77 µg/kg 4.53 µg/kg 4.77 µg/kg 4.56 µg/kg 4.73 µg/kg 4.73 µg/kg	52.4 μg/kg wet 50.0 μg/kg wet 50.0 μg/kg wet 4.74 μg/kg 14.4 QC6 μg/kg 5.71 μg/kg 4.39 μg/kg 4.01 μg/kg 4.64 μg/kg 4.10 μg/kg 4.53 μg/kg 4.01 μg/kg 4.63 μg/kg 4.01 μg/kg 4.60 μg/kg 4.01 μg/kg 4.01 μg/kg 4.11 μg/kg 4.27 μg/kg 4.27 μg/kg 4.27 μg/kg 4.28 μg/kg 4.29 μg/kg 4.13 μg/kg 4.29 μg/kg 4.13 μg/kg 4.29 μg/kg 4.13 μg/kg 4.29 μg/kg 4.14 μg/kg 4.15 μg/kg 4.16 μg/kg 4.17 μg/kg 4.18 μg/kg 4.19 μg/kg 4.19 μg/kg 4.11 μg/kg 4.11 μg/kg 4.12 μg/kg 4.13 μg/kg 4.14 μg/kg 4.15 μg/kg 4.17 μg/kg 4.17 μg/kg 4.53 μg/kg 4.77 μg/kg 4.53 μg/kg 4.77 μg/kg 4.56 μg/kg 4.73 μg/kg	52.4 μg/kg wet 50.0 μg/kg wet 50.0 μg/kg wet 50.0 14.74 μg/kg 5.00 14.4 QC6 μg/kg 5.00 5.71 μg/kg 5.00 4.39 μg/kg 5.00 4.49 μg/kg 5.00 4.64 μg/kg 5.00 4.53 μg/kg 5.00 4.63 μg/kg 5.00 4.64 μg/kg 5.00 4.65 μg/kg 5.00 4.60 μg/kg 5.00 4.77 μg/kg 5.00 4.88 μg/kg 5.00 4.82 μg/kg 5.00 4.84 μg/kg 5.00 4.85 μg/kg 5.00 4.86 μg/kg 5.00 4.87 μg/kg 5.00 4.88 μg/kg 5.00 4.89 μg/kg 5.00 4.11 μg/kg 5.00 4.29 μg/kg 5.00 4.29 μg/kg 5.00 4.39 μg/kg 5.00 4.44 μg/kg 5.00 4.48 μg/kg 5.00 4.48 μg/kg 5.00 4.49 μg/kg 5.00 4.41 μg/kg 5.00 4.42 μg/kg 5.00 4.43 μg/kg 5.00 4.44 μg/kg 5.00 4.45 μg/kg 5.00 4.46 μg/kg 5.00 4.47 μg/kg 5.00 4.48 μg/kg 5.00 4.49 μg/kg 5.00 4.49 μg/kg 5.00 4.41 μg/kg 5.00 4.42 μg/kg 5.00 4.43 μg/kg 5.00 4.44 μg/kg 5.00 4.53 μg/kg 5.00 4.56 μg/kg 5.00 4.77 μg/kg 5.00 4.77 μg/kg 5.00 4.56 μg/kg 5.00 4.73 μg/kg 5.00	52.4 μg/kg wet 50.0 14.74 μg/kg 5.00 14.4 QC6 μg/kg 5.00 5.71 μg/kg 5.00 4.39 μg/kg 5.00 4.49 μg/kg 5.00 4.64 μg/kg 5.00 4.53 μg/kg 5.00 4.60 μg/kg 5.00 4.61 μg/kg 5.00 4.62 μg/kg 5.00 4.63 μg/kg 5.00 4.60 μg/kg 5.00 4.61 μg/kg 5.00 4.62 μg/kg 5.00 4.88 μg/kg 5.00 4.85 μg/kg 5.00 4.85 μg/kg 5.00 4.85 μg/kg 5.00 4.86 μg/kg 5.00 4.87 μg/kg 5.00 4.88 μg/kg 5.00 4.89 μg/kg 5.00 4.99 μg/kg 5.00 4.11 μg/kg 5.00 4.12 μg/kg 5.00 4.29 μg/kg 5.00 4.11 μg/kg 5.00 4.29 μg/kg 5.00 4.11 μg/kg 5.00 4.12 μg/kg 5.00 4.13 μg/kg 5.00 4.14 μg/kg 5.00 4.15 μg/kg 5.00 4.16 μg/kg 5.00 4.17 μg/kg 5.00	52.4 μg/kg wet 50.0 105 50.0 μg/kg wet 50.0 100 Prepared & Analyzed: 28-4.74 4.74 μg/kg 5.00 95 14.4 QC6 μg/kg 5.00 288 5.71 μg/kg 5.00 80 4.39 μg/kg 5.00 80 4.49 μg/kg 5.00 90 4.64 μg/kg 5.00 93 4.10 μg/kg 5.00 93 4.10 μg/kg 5.00 93 4.53 μg/kg 5.00 93 4.63 μg/kg 5.00 93 4.01 μg/kg 5.00 93 4.01 μg/kg 5.00 93 4.02 μg/kg 5.00 93 4.03 μg/kg 5.00 92 4.04 μg/kg 5.00 82 4.27 μg/kg 5.00 85 6.73<	52.4 μg/kg wet 50.0 105 70-130 50.0 μg/kg wet 50.0 100 70-130 Prepared & Analyzed: 28-Sep-20 4.74 μg/kg 5.00 95 0-200 1.4.4 QC6 μg/kg 5.00 288 0-200 5.71 μg/kg 5.00 88 0-200 4.39 μg/kg 5.00 88 0-200 4.01 μg/kg 5.00 80 0-200 4.49 μg/kg 5.00 90 0-200 4.64 μg/kg 5.00 93 0-200 4.63 μg/kg 5.00 93 0-200 4.63 μg/kg 5.00 93 0-200 3.71 μg/kg 5.00 93 0-200 3.71 μg/kg 5.00 92 0-200 4.60 μg/kg 5.00 85 0-200 4.27 μg/kg 5.00 85 0-200	52.4 μg/kg wet 50.0 105 70-130 Prepared & Analyzed: 28-Sep-20 4.74 μg/kg 5.00 95 0-200 14.4 QC6 μg/kg 5.00 288 0-200 5.71 μg/kg 5.00 114 0-200 4.39 μg/kg 5.00 88 0-200 4.01 μg/kg 5.00 80 0-200 4.49 μg/kg 5.00 90 0-200 4.64 μg/kg 5.00 93 0-200 4.63 μg/kg 5.00 82 0-200 4.63 μg/kg 5.00 93 0-200 4.63 μg/kg 5.00 93 0-200 4.60 μg/kg 5.00 80 0-200 4.27 μg/kg 5.00 82 0-200 4.27 μg/kg 5.00 85 0-200 4.29 μg/kg 5.00 85 0-200

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS										
atch 2001826 - SW846 5035A Soil (low level)										
MRL Check (2001826-MRL1)					Pre	epared & A	nalyzed: 28-	Sep-20		
1,3-Dichloropropane	4.47		μg/kg		5.00		89	0-200		
2,2-Dichloropropane	4.11		μg/kg		5.00		82	0-200		
1,1-Dichloropropene	4.46		μg/kg		5.00		89	0-200		
cis-1,3-Dichloropropene	4.06		μg/kg		5.00		81	0-200		
trans-1,3-Dichloropropene	4.23		μg/kg		5.00		85	0-200		
Ethylbenzene	7.78		μg/kg		5.00		156	0-200		
Hexachlorobutadiene	4.38		μg/kg		5.00		88	0-200		
2-Hexanone (MBK)	4.92		μg/kg		5.00		98	0-200		
Isopropylbenzene	4.10		μg/kg		5.00		82	0-200		
4-Isopropyltoluene	4.15		μg/kg		5.00		83	0-200		
Methyl tert-butyl ether	4.51		μg/kg		5.00		90	0-200		
4-Methyl-2-pentanone (MIBK)	5.13		μg/kg		5.00		103	0-200		
Methylene chloride	7.36		μg/kg		5.00		147	0-200		
Naphthalene	4.59		μg/kg		5.00		92	0-200		
n-Propylbenzene	5.39		μg/kg		5.00		108	0-200		
Styrene	3.68		μg/kg		5.00		74	0-200		
1,1,1,2-Tetrachloroethane	4.28		μg/kg		5.00		86	0-200		
1,1,2,2-Tetrachloroethane	4.78		μg/kg		5.00		96	0-200		
Tetrachloroethene	4.63		μg/kg		5.00		93	0-200		
Toluene	5.51		μg/kg		5.00		110	0-200		
1,2,3-Trichlorobenzene	4.29		μg/kg		5.00		86	0-200		
1,2,4-Trichlorobenzene	4.33		μg/kg		5.00		87	0-200		
1,3,5-Trichlorobenzene	4.33		μg/kg		5.00		87	0-200		
1,1,1-Trichloroethane	4.25		μg/kg		5.00		85	0-200		
1,1,2-Trichloroethane	4.89		μg/kg		5.00		98	0-200		
Trichloroethene	4.40		μg/kg		5.00		88	0-200		
Trichlorofluoromethane (Freon 11)	6.74		μg/kg		5.00		135	0-200		
1,2,3-Trichloropropane	4.42		μg/kg		5.00		88	0-200		
1,2,4-Trimethylbenzene	9.77		μg/kg		5.00		195	0-200		
1,3,5-Trimethylbenzene	5.29		μg/kg		5.00		106	0-200		
Vinyl chloride	4.33		μg/kg		5.00		87	0-200		
m,p-Xylene	18.9		μg/kg		10.0		189	0-200		
o-Xylene	6.33		μg/kg		5.00		127	0-200		
Tetrahydrofuran	4.04		μg/kg		5.00		81	0-200		
Ethyl ether	4.83		μg/kg		5.00		97	0-200		
Tert-amyl methyl ether	5.68		μg/kg		5.00		114	0-200		
Ethyl tert-butyl ether	4.26		μg/kg		5.00		85	0-200		
Di-isopropyl ether	4.48		μg/kg		5.00		90	0-200		
Tert-Butanol / butyl alcohol	52.3		μg/kg		50.0		105	0-200		
1,4-Dioxane	41.2		μg/kg		50.0		82	0-200		
trans-1,4-Dichloro-2-butene	3.70		μg/kg		5.00		74	0-200		
Ethanol	190		μg/kg		100		190	0-200		
Surrogate: 4-Bromofluorobenzene	48.4		μg/kg wet		50.0		97	70-130		
Surrogate: Toluene-d8	52.2		μg/kg wet		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.9		μg/kg wet		50.0		110	70-130		
Surrogate: Dibromofluoromethane	50.7		μg/kg wet		50.0		101	70-130		
atch 2001880 - SW846 5035A Soil (low level)			. 5 5		-					
Blank (2001880-BLK1)					Dr	enared & A	nalyzed: 29-	Sen-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00		μg/kg wet	5.00	<u>F 18</u>	parcu & Al	141y264. 29-	COP-20		
Acetone	< 50.0 < 50.0		μg/kg wet μg/kg wet	50.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
Blank (2001880-BLK1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
Acrylonitrile	< 5.00		μg/kg wet	5.00			-			
Benzene	< 5.00		μg/kg wet	5.00						
Bromobenzene	< 5.00		μg/kg wet	5.00						
Bromochloromethane	< 5.00		μg/kg wet	5.00						
Bromodichloromethane	< 5.00		μg/kg wet	5.00						
Bromoform	< 5.00		μg/kg wet	5.00						
Bromomethane	< 10.0		μg/kg wet	10.0						
n-Butylbenzene	< 10.0		μg/kg wet	10.0						
sec-Butylbenzene	< 5.00		μg/kg wet	5.00						
tert-Butylbenzene	< 5.00		μg/kg wet	5.00						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.00		μg/kg wet	5.00						
Chlorobenzene	< 5.00		μg/kg wet	5.00						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.00		μg/kg wet	5.00						
Chloromethane	< 10.0		μg/kg wet	10.0						
2-Chlorotoluene	< 5.00		μg/kg wet μg/kg wet	5.00						
4-Chlorotoluene	< 5.00		µg/kg wet	5.00						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet μg/kg wet	10.0						
Dibromochloromethane	< 5.00		μg/kg wet	5.00						
1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet μg/kg wet	5.00						
Dibromomethane	< 5.00		μg/kg wet	5.00						
1,2-Dichlorobenzene	< 5.00			5.00						
			μg/kg wet							
1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,2-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,1-Dichloroethene	< 5.00		μg/kg wet	5.00						
cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		μg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		μg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		μg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
trans-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00						
Ethylbenzene	< 5.00		μg/kg wet	5.00						
Hexachlorobutadiene	< 10.0		μg/kg wet	10.0						
2-Hexanone (MBK)	< 10.0		μg/kg wet	10.0						
Isopropylbenzene	< 5.00		μg/kg wet	5.00						
4-Isopropyltoluene	< 5.00		μg/kg wet	5.00						
Methyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.00		μg/kg wet	5.00						
n-Propylbenzene	< 5.00		μg/kg wet	5.00						
Styrene	< 5.00		μg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
Blank (2001880-BLK1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
Tetrachloroethene	< 5.00		μg/kg wet	5.00						
Toluene	< 5.00		μg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00						
Trichloroethene	< 5.00		μg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
Vinyl chloride	< 5.00		μg/kg wet	5.00						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.00		μg/kg wet μg/kg wet	5.00						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.00		μg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		μg/kg wet μg/kg wet	5.00						
Di-isopropyl ether	< 5.00		μg/kg wet	5.00						
Tert-Butanol / butyl alcohol	< 100		μg/kg wet μg/kg wet	100						
1,4-Dioxane	< 100		μg/kg wet μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet μg/kg wet	25.0						
Ethanol	< 1000		μg/kg wet	1000						
					50.0			70.400		
Surrogate: 4-Bromofluorobenzene	47.3		μg/kg wet		50.0		95	70-130		
Surrogate: Toluene-d8	51.4		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.2		μg/kg wet		50.0		104	70-130		
Surrogate: Dibromofluoromethane	51.0		μg/kg wet		50.0		102	70-130		
LCS (2001880-BS1)						epared & A	nalyzed: 29-	<u>Sep-20</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.5		μg/kg		20.0		92	70-130		
Acetone	7.81	QC6	μg/kg		20.0		39	70-130		
Acrylonitrile	17.5		μg/kg		20.0		87	70-130		
Benzene	19.5		μg/kg		20.0		97	70-130		
Bromobenzene	20.4		μg/kg		20.0		102	70-130		
Bromochloromethane	19.3		μg/kg		20.0		96	70-130		
Bromodichloromethane	19.7		μg/kg		20.0		98	70-130		
Bromoform	19.7		μg/kg		20.0		98	70-130		
Bromomethane	22.2		μg/kg		20.0		111	70-130		
n-Butylbenzene	19.7		μg/kg		20.0		98	70-130		
sec-Butylbenzene	19.6		μg/kg		20.0		98	70-130		
tert-Butylbenzene	19.8		μg/kg		20.0		99	70-130		
Carbon disulfide	19.6		μg/kg		20.0		98	70-130		
Carbon tetrachloride	18.8		μg/kg		20.0		94	70-130		
Chlorobenzene	20.2		μg/kg		20.0		101	70-130		
Chloroethane	105	BsH, QC6	μg/kg		20.0		525	70-130		
Chloroform	19.8		μg/kg		20.0		99	70-130		
Chloromethane	20.3		μg/kg		20.0		102	70-130		
2-Chlorotoluene	18.2		μg/kg		20.0		91	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
LCS (2001880-BS1)					Pre	epared & Ai	nalyzed: 29-	Sep-20		
1,2-Dibromo-3-chloropropane	18.5		μg/kg		20.0		92	70-130		
Dibromochloromethane	19.2		μg/kg		20.0		96	70-130		
1,2-Dibromoethane (EDB)	19.3		μg/kg		20.0		97	70-130		
Dibromomethane	18.9		μg/kg		20.0		94	70-130		
1,2-Dichlorobenzene	20.5		μg/kg		20.0		102	70-130		
1,3-Dichlorobenzene	20.4		μg/kg		20.0		102	70-130		
1,4-Dichlorobenzene	20.0		μg/kg		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	18.5		μg/kg		20.0		92	70-130		
1,1-Dichloroethane	19.8		μg/kg		20.0		99	70-130		
1,2-Dichloroethane	19.8		μg/kg		20.0		99	70-130		
1,1-Dichloroethene	18.6		μg/kg		20.0		93	70-130		
cis-1,2-Dichloroethene	19.4		μg/kg		20.0		97	70-130		
trans-1,2-Dichloroethene	19.5		μg/kg		20.0		98	70-130		
1,2-Dichloropropane	19.8		μg/kg		20.0		99	70-130		
1,3-Dichloropropane	19.4		μg/kg		20.0		97	70-130		
2,2-Dichloropropane	19.3		μg/kg		20.0		96	70-130		
1,1-Dichloropropene	18.7		μg/kg		20.0		93	70-130		
cis-1,3-Dichloropropene	18.8		μg/kg		20.0		94	70-130		
trans-1,3-Dichloropropene	17.9		μg/kg		20.0		89	70-130		
Ethylbenzene	19.6		μg/kg		20.0		98	70-130		
Hexachlorobutadiene	20.2		μg/kg		20.0		101	70-130		
2-Hexanone (MBK)	16.6		μg/kg		20.0		83	70-130		
Isopropylbenzene	19.4		μg/kg		20.0		97	70-130		
4-Isopropyltoluene	19.2		μg/kg		20.0		96	70-130		
Methyl tert-butyl ether	18.1		μg/kg		20.0		91	70-130		
4-Methyl-2-pentanone (MIBK)	17.9		μg/kg μg/kg		20.0		89	70-130		
Methylene chloride	17.4		μg/kg μg/kg		20.0		87	70-130		
Naphthalene	18.8		μg/kg μg/kg		20.0		94	70-130		
n-Propylbenzene	20.0		μg/kg μg/kg		20.0		100	70-130		
Styrene	19.4		μg/kg μg/kg		20.0		97	70-130		
1,1,1,2-Tetrachloroethane	20.0				20.0		100	70-130		
1,1,2.7-Tetrachloroethane			μg/kg		20.0		97	70-130		
. , ,	19.5		μg/kg		20.0			70-130		
Tetrachloroethene	19.6		μg/kg		20.0		98	70-130 70-130		
Toluene	19.8		μg/kg				99			
1,2,3-Trichlorobenzene	20.3		μg/kg		20.0		102	70-130		
1,2,4-Trichlorobenzene	19.9		μg/kg		20.0		100	70-130		
1,3,5-Trichlorobenzene	20.1		μg/kg		20.0		101	70-130		
1,1,1-Trichloroethane	19.7		μg/kg "		20.0		98	70-130		
1,1,2-Trichloroethane	19.5		μg/kg "		20.0		97	70-130		
Trichloroethene	19.1		μg/kg "		20.0		95	70-130		
Trichlorofluoromethane (Freon 11)	17.5		μg/kg 		20.0		88	70-130		
1,2,3-Trichloropropane	18.0		μg/kg 		20.0		90	70-130		
1,2,4-Trimethylbenzene	19.7		μg/kg "		20.0		99	70-130		
1,3,5-Trimethylbenzene	19.4		μg/kg 		20.0		97	70-130		
Vinyl chloride	21.7		μg/kg		20.0		108	70-130		
m,p-Xylene	37.6		μg/kg		40.0		94	70-130		
o-Xylene	19.1		μg/kg		20.0		96	70-130		
Tetrahydrofuran	15.6		μg/kg		20.0		78	70-130		
Ethyl ether	18.0		μg/kg		20.0		90	70-130		
Tert-amyl methyl ether	20.1		μg/kg		20.0		101	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8260C LLS										
atch 2001880 - SW846 5035A Soil (low level)										
LCS (2001880-BS1)					Pre	epared & Ar	nalyzed: 29-	Sep-20		
Ethyl tert-butyl ether	18.4		μg/kg		20.0		92	70-130		
Di-isopropyl ether	18.6		μg/kg		20.0		93	70-130		
Tert-Butanol / butyl alcohol	160		μg/kg		200		80	70-130		
1,4-Dioxane	172		μg/kg		200		86	70-130		
trans-1,4-Dichloro-2-butene	18.6		μg/kg		20.0		93	70-130		
Ethanol	281		μg/kg		400		70	70-130		
Surrogate: 4-Bromofluorobenzene	49.3		μg/kg wet		50.0		99	70-130		
Surrogate: Toluene-d8	50.7		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.2		μg/kg wet		50.0		98	70-130		
Surrogate: Dibromofluoromethane	49.3		μg/kg wet		50.0		99	70-130		
LCS Dup (2001880-BSD1)	40.0		µg/kg wet			anarad & A	nalyzed: 29-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.9		μg/kg		20.0	parcu & Al	95	70-130	3	30
Acetone	10.9	QC6	μg/kg μg/kg		20.0		95 50	70-130 70-130	25	30
		QOU			20.0		96	70-130 70-130	9	30
Acrylonitrile Benzene	19.2		μg/kg		20.0		96 101	70-130 70-130		30
Bromobenzene	20.3 19.6		μg/kg		20.0			70-130 70-130	4	30
			μg/kg				98		4	
Bromochloromethane	19.8		μg/kg		20.0		99	70-130	3	30
Bromodichloromethane	20.2		μg/kg		20.0		101	70-130	3	30
Bromoform	19.4		μg/kg		20.0		97	70-130	1	30
Bromomethane	22.0		μg/kg "		20.0		110	70-130	0.8	30
n-Butylbenzene	20.4		μg/kg "		20.0		102	70-130	3	30
sec-Butylbenzene	19.5		μg/kg		20.0		98	70-130	0.5	30
tert-Butylbenzene	19.5		μg/kg "		20.0		97	70-130	2	30
Carbon disulfide	20.1		μg/kg "		20.0		101	70-130	3	30
Carbon tetrachloride	19.6		μg/kg 		20.0		98	70-130	4	30
Chlorobenzene	19.9		μg/kg 		20.0		99	70-130	2	30
Chloroethane	108	BsH, QC6	μg/kg		20.0		541	70-130	3	30
Chloroform	19.9		μg/kg		20.0		100	70-130	0.7	30
Chloromethane	21.1		μg/kg		20.0		106	70-130	4	30
2-Chlorotoluene	18.3		μg/kg		20.0		92	70-130	0.5	30
4-Chlorotoluene	19.2		μg/kg		20.0		96	70-130	0.2	30
1,2-Dibromo-3-chloropropane	18.7		μg/kg		20.0		93	70-130	1	30
Dibromochloromethane	19.5		μg/kg		20.0		97	70-130	1	30
1,2-Dibromoethane (EDB)	19.7		μg/kg		20.0		99	70-130	2	30
Dibromomethane	18.8		μg/kg		20.0		94	70-130	0.4	30
1,2-Dichlorobenzene	20.3		μg/kg		20.0		101	70-130	1	30
1,3-Dichlorobenzene	19.8		μg/kg		20.0		99	70-130	3	30
1,4-Dichlorobenzene	20.2		μg/kg		20.0		101	70-130	1	30
Dichlorodifluoromethane (Freon12)	19.0		μg/kg		20.0		95	70-130	3	30
1,1-Dichloroethane	21.3		μg/kg		20.0		107	70-130	8	30
1,2-Dichloroethane	20.7		μg/kg		20.0		104	70-130	5	30
1,1-Dichloroethene	18.9		μg/kg		20.0		94	70-130	2	30
cis-1,2-Dichloroethene	20.2		μg/kg		20.0		101	70-130	4	30
trans-1,2-Dichloroethene	20.1		μg/kg		20.0		101	70-130	3	30
1,2-Dichloropropane	20.6		μg/kg		20.0		103	70-130	4	30
1,3-Dichloropropane	19.6		μg/kg		20.0		98	70-130	0.8	30
2,2-Dichloropropane	19.6		μg/kg		20.0		98	70-130	2	30
1,1-Dichloropropene	20.0		μg/kg		20.0		100	70-130	7	30
cis-1,3-Dichloropropene	19.7		μg/kg μg/kg		20.0		99	70-130	, 5	30

					Spike	Source		%REC	_	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C LLS										
Batch 2001880 - SW846 5035A Soil (low level)										
LCS Dup (2001880-BSD1)					Pre	epared & A	nalyzed: 29-	-Sep-20		
trans-1,3-Dichloropropene	18.5		μg/kg		20.0		93	70-130	4	30
Ethylbenzene	19.5		μg/kg		20.0		98	70-130	0.3	30
Hexachlorobutadiene	19.2		μg/kg		20.0		96	70-130	5	30
2-Hexanone (MBK)	18.6		μg/kg		20.0		93	70-130	11	30
Isopropylbenzene	19.4		μg/kg		20.0		97	70-130	0	30
4-Isopropyltoluene	19.7		μg/kg		20.0		98	70-130	3	30
Methyl tert-butyl ether	19.0		μg/kg		20.0		95	70-130	5	30
4-Methyl-2-pentanone (MIBK)	19.3		μg/kg		20.0		96	70-130	7	30
Methylene chloride	17.8		μg/kg		20.0		89	70-130	2	30
Naphthalene	18.9		μg/kg		20.0		95	70-130	0.6	30
n-Propylbenzene	20.2		μg/kg		20.0		101	70-130	1	30
Styrene	19.4		μg/kg		20.0		97	70-130	0	30
1,1,1,2-Tetrachloroethane	19.6		μg/kg		20.0		98	70-130	2	30
1,1,2,2-Tetrachloroethane	19.6		μg/kg		20.0		98	70-130	0.7	30
Tetrachloroethene	19.3		μg/kg		20.0		96	70-130	2	30
Toluene	20.0		μg/kg		20.0		100	70-130	0.9	30
1,2,3-Trichlorobenzene	19.6		μg/kg μg/kg		20.0		98	70-130	4	30
1,2,4-Trichlorobenzene	19.3		μg/kg μg/kg		20.0		97	70-130	3	30
1,3,5-Trichlorobenzene	19.4		μg/kg μg/kg		20.0		97	70-130	4	30
1,1,1-Trichloroethane	20.0		μg/kg μg/kg		20.0		100	70-130	2	30
1,1,2-Trichloroethane	20.3		μg/kg μg/kg		20.0		100	70-130	4	30
Trichloroethene	20.3 19.7				20.0		99	70-130	3	30
			μg/kg							
Trichlorofluoromethane (Freon 11)	17.5		μg/kg		20.0		87	70-130	0.3	30
1,2,3-Trichloropropane	18.8		μg/kg		20.0		94	70-130	5	30
1,2,4-Trimethylbenzene	19.9		μg/kg		20.0		99	70-130	0.8	30
1,3,5-Trimethylbenzene	19.4		μg/kg 		20.0		97	70-130	0.3	30
Vinyl chloride	22.9		μg/kg 		20.0		115	70-130	6	30
m,p-Xylene	37.5		μg/kg 		40.0		94	70-130	0.3	30
o-Xylene	19.3		μg/kg		20.0		96	70-130	1	30
Tetrahydrofuran	17.0		μg/kg		20.0		85	70-130	9	30
Ethyl ether	19.0		μg/kg		20.0		95	70-130	5	30
Tert-amyl methyl ether	21.0		μg/kg		20.0		105	70-130	4	30
Ethyl tert-butyl ether	19.4		μg/kg		20.0		97	70-130	5	30
Di-isopropyl ether	20.2		μg/kg		20.0		101	70-130	8	30
Tert-Butanol / butyl alcohol	168		μg/kg		200		84	70-130	5	30
1,4-Dioxane	166		μg/kg		200		83	70-130	4	30
trans-1,4-Dichloro-2-butene	18.8		μg/kg		20.0		94	70-130	1	30
Ethanol	298		μg/kg		400		74	70-130	6	30
Surrogate: 4-Bromofluorobenzene	49.2		μg/kg wet		50.0		98	70-130		
Surrogate: Toluene-d8	51.6		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.7		μg/kg wet		50.0		103	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/kg wet		50.0		101	70-130		
MRL Check (2001880-MRL1)						epared & A	nalyzed: 29-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	5.13		μg/kg		5.00		103	0-200		
Acetone	0.00		μg/kg μg/kg		5.00		100	0-200		
Acrylonitrile	5.32		μg/kg μg/kg		5.00		106	0-200		
Benzene			μg/kg μg/kg		5.00		99	0-200		
	4.96									
Bromobleromethane	4.93		μg/kg		5.00		99 100	0-200		
Bromochloromethane	5.47 5.89		μg/kg μg/kg		5.00 5.00		109 118	0-200 0-200		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS										
atch 2001880 - SW846 5035A Soil (low level)										
MRL Check (2001880-MRL1)					Pre	epared & Ar	nalyzed: 29-	Sep-20		
Bromoform	5.24		μg/kg		5.00		105	0-200		
Bromomethane	6.79		μg/kg		5.00		136	0-200		
2-Butanone (MEK)	0.00		μg/kg		5.00			0-200		
n-Butylbenzene	5.10		μg/kg		5.00		102	0-200		
sec-Butylbenzene	4.94		μg/kg		5.00		99	0-200		
tert-Butylbenzene	4.25		μg/kg		5.00		85	0-200		
Carbon disulfide	5.57		μg/kg		5.00		111	0-200		
Carbon tetrachloride	4.64		μg/kg		5.00		93	0-200		
Chlorobenzene	5.35		μg/kg		5.00		107	0-200		
Chloroethane	29.4		μg/kg		5.00		588	0-200		
Chloroform	5.62		μg/kg		5.00		112	0-200		
Chloromethane	5.07		μg/kg		5.00		101	0-200		
2-Chlorotoluene	5.02		μg/kg μg/kg		5.00		100	0-200		
4-Chlorotoluene	5.02 4.96		μg/kg μg/kg		5.00		99	0-200		
1,2-Dibromo-3-chloropropane	5.23		μg/kg μg/kg		5.00		105	0-200		
							99	0-200		
Dibromochloromethane 1,2-Dibromoethane (EDB)	4.93		μg/kg		5.00			0-200		
	5.35		μg/kg		5.00		107			
Dibromomethane	4.89		μg/kg		5.00		98	0-200		
1,2-Dichlorobenzene	5.62		μg/kg "		5.00		112	0-200		
1,3-Dichlorobenzene	5.34		μg/kg "		5.00		107	0-200		
1,4-Dichlorobenzene	5.70		μg/kg 		5.00		114	0-200		
Dichlorodifluoromethane (Freon12)	4.53		μg/kg 		5.00		91	0-200		
1,1-Dichloroethane	5.57		μg/kg		5.00		111	0-200		
1,2-Dichloroethane	5.37		µg/kg		5.00		107	0-200		
1,1-Dichloroethene	4.97		µg/kg		5.00		99	0-200		
cis-1,2-Dichloroethene	4.77		µg/kg		5.00		95	0-200		
trans-1,2-Dichloroethene	5.22		µg/kg		5.00		104	0-200		
1,2-Dichloropropane	5.51		μg/kg		5.00		110	0-200		
1,3-Dichloropropane	5.30		µg/kg		5.00		106	0-200		
2,2-Dichloropropane	4.97		µg/kg		5.00		99	0-200		
1,1-Dichloropropene	4.59		μg/kg		5.00		92	0-200		
cis-1,3-Dichloropropene	4.74		μg/kg		5.00		95	0-200		
trans-1,3-Dichloropropene	4.55		μg/kg		5.00		91	0-200		
Ethylbenzene	5.14		μg/kg		5.00		103	0-200		
Hexachlorobutadiene	5.19		μg/kg		5.00		104	0-200		
2-Hexanone (MBK)	5.06		μg/kg		5.00		101	0-200		
Isopropylbenzene	4.85		μg/kg		5.00		97	0-200		
4-Isopropyltoluene	4.63		μg/kg		5.00		93	0-200		
Methyl tert-butyl ether	4.53		μg/kg		5.00		91	0-200		
4-Methyl-2-pentanone (MIBK)	5.26		μg/kg		5.00		105	0-200		
Methylene chloride	5.10		μg/kg		5.00		102	0-200		
Naphthalene	4.64		μg/kg		5.00		93	0-200		
n-Propylbenzene	5.99		μg/kg		5.00		120	0-200		
Styrene	4.46		μg/kg		5.00		89	0-200		
1,1,1,2-Tetrachloroethane	5.13		μg/kg		5.00		103	0-200		
1,1,2,2-Tetrachloroethane	5.91		μg/kg		5.00		118	0-200		
Tetrachloroethene	4.66		μg/kg μg/kg		5.00		93	0-200		
Toluene	5.05		μg/kg μg/kg		5.00		101	0-200		
1,2,3-Trichlorobenzene					5.00		101	0-200		
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	5.06 5.31		μg/kg μg/kg		5.00		101	0-200		

nalyte(s)	Result	Flag Uı	nits *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C LLS									
atch 2001880 - SW846 5035A Soil (low level)									
MRL Check (2001880-MRL1)				Pre	epared & Ar	nalyzed: 29-	Sep-20		
1,3,5-Trichlorobenzene	5.30	μg	/kg	5.00		106	0-200		
1,1,1-Trichloroethane	5.01	μд	/kg	5.00		100	0-200		
1,1,2-Trichloroethane	6.33	μg	/kg	5.00		127	0-200		
Trichloroethene	4.89	μд	/kg	5.00		98	0-200		
Trichlorofluoromethane (Freon 11)	4.54	μд	/kg	5.00		91	0-200		
1,2,3-Trichloropropane	5.32	μд	/kg	5.00		106	0-200		
1,2,4-Trimethylbenzene	4.67	μд	/kg	5.00		93	0-200		
1,3,5-Trimethylbenzene	4.40	μд	/kg	5.00		88	0-200		
Vinyl chloride	5.85	μд	/kg	5.00		117	0-200		
m,p-Xylene	8.95	μд	/kg	10.0		90	0-200		
o-Xylene	4.49	μд	/kg	5.00		90	0-200		
Tetrahydrofuran	4.60	μд	/kg	5.00		92	0-200		
Ethyl ether	4.62	μд	/kg	5.00		92	0-200		
Tert-amyl methyl ether	6.14	μд	/kg	5.00		123	0-200		
Ethyl tert-butyl ether	4.79	μд	/kg	5.00		96	0-200		
Di-isopropyl ether	4.94	μд	/kg	5.00		99	0-200		
Tert-Butanol / butyl alcohol	52.0	μд	/kg	50.0		104	0-200		
1,4-Dioxane	43.5	μд	/kg	50.0		87	0-200		
trans-1,4-Dichloro-2-butene	4.44	μд	/kg	5.00		89	0-200		
Ethanol	86.1	μд	/kg	100		86	0-200		
Surrogate: 4-Bromofluorobenzene	47.2	μg/k	g wet	50.0	_	94	70-130		
Surrogate: Toluene-d8	51.0	μg/k	g wet	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.0	μg/k	g wet	50.0		106	70-130		
Surrogate: Dibromofluoromethane	50.3	μg/k	g wet	50.0		101	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
Blank (2001800-BLK1)					Pre	epared & Ar	nalyzed: 22-	Sep-20		
Acenaphthene	< 66.7		μg/kg wet	66.7	·		-			
Acenaphthylene	< 66.7		μg/kg wet	66.7						
Aniline	< 330		μg/kg wet	330						
Anthracene	< 66.7		μg/kg wet	66.7						
Azobenzene/Diphenyldiazene	< 330		μg/kg wet	330						
Benzidine	< 660		μg/kg wet	660						
Benzo (a) anthracene	< 66.7		μg/kg wet	66.7						
Benzo (a) pyrene	< 66.7		μg/kg wet	66.7						
Benzo (b) fluoranthene	< 66.7		μg/kg wet	66.7						
Benzo (g,h,i) perylene	< 66.7		μg/kg wet	66.7						
Benzo (k) fluoranthene	< 66.7		μg/kg wet	66.7						
Benzoic acid	< 330		μg/kg wet	330						
Benzyl alcohol	< 330		μg/kg wet	330						
Bis(2-chloroethoxy)methane	< 330		μg/kg wet	330						
Bis(2-chloroethyl)ether	< 167		µg/kg wet	167						
Bis(2-chloroisopropyl)ether	< 167		μg/kg wet	167						
Bis(2-ethylhexyl)phthalate	< 167		μg/kg wet	167						
4-Bromophenyl phenyl ether	< 330		μg/kg wet	330						
Butyl benzyl phthalate	< 330		μg/kg wet μg/kg wet	330						
Carbazole	< 167		μg/kg wet μg/kg wet	167						
4-Chloro-3-methylphenol	< 330		μg/kg wet μg/kg wet	330						
4-Chloroaniline	< 167		μg/kg wet μg/kg wet	167						
2-Chloronaphthalene	< 330		μg/kg wet μg/kg wet	330						
2-Chlorophenol	< 167		μg/kg wet μg/kg wet	167						
4-Chlorophenyl phenyl ether	< 330		μg/kg wet μg/kg wet	330						
Chrysene	< 66.7			66.7						
Dibenzo (a,h) anthracene	< 66.7		μg/kg wet	66.7						
Dibenzofuran	< 167		μg/kg wet	167						
			μg/kg wet							
1,2-Dichlorobenzene 1,3-Dichlorobenzene	< 330		μg/kg wet	330						
,	< 330		μg/kg wet	330						
1,4-Dichlorobenzene	< 330		μg/kg wet	330						
3,3'-Dichlorobenzidine	< 330		μg/kg wet	330						
2,4-Dichlorophenol	< 167		μg/kg wet	167						
Diethyl phthalate	< 330		µg/kg wet	330						
Dimethyl phthalate	< 330 < 330		µg/kg wet	330						
2,4-Dimethylphenol			μg/kg wet	330						
Di-n-butyl phthalate	< 330		μg/kg wet	330						
4,6-Dinitro-2-methylphenol	< 330		μg/kg wet	330						
2,4-Dinitrophenol	< 330		μg/kg wet	330						
2,4-Dinitrotoluene	< 167		μg/kg wet	167						
2,6-Dinitrotoluene	< 167		μg/kg wet	167						
Di-n-octyl phthalate	< 330		μg/kg wet	330						
Fluoranthene	< 66.7		μg/kg wet	66.7						
Fluorene	< 66.7		μg/kg wet	66.7						
Hexachlorobenzene	< 167		μg/kg wet	167						
Hexachlorobutadiene	< 167		μg/kg wet	167						
Hexachlorocyclopentadiene	< 167		μg/kg wet	167						
Hexachloroethane	< 167		μg/kg wet	167						
Indeno (1,2,3-cd) pyrene	< 66.7		μg/kg wet	66.7						
Isophorone	< 167		μg/kg wet	167						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
Blank (2001800-BLK1)					Pre	epared & A	nalyzed: 22-	Sep-20		
2-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2-Methylphenol	< 330		μg/kg wet	330						
3 & 4-Methylphenol	< 330		μg/kg wet	330						
Naphthalene	< 66.7		μg/kg wet	66.7						
2-Nitroaniline	< 330		μg/kg wet	330						
3-Nitroaniline	< 330		μg/kg wet	330						
4-Nitroaniline	< 167		μg/kg wet	167						
Nitrobenzene	< 167		μg/kg wet	167						
2-Nitrophenol	< 167		μg/kg wet	167						
4-Nitrophenol	< 1320		μg/kg wet	1320						
N-Nitrosodimethylamine	< 167		μg/kg wet	167						
N-Nitrosodi-n-propylamine	< 167		μg/kg wet	167						
N-Nitrosodiphenylamine	< 330		μg/kg wet	330						
Pentachlorophenol	< 330		μg/kg wet	330						
Phenanthrene	< 66.7		μg/kg wet	66.7						
Phenol	< 330		μg/kg wet	330						
Pyrene	< 66.7		μg/kg wet	66.7						
Pyridine	< 330		μg/kg wet	330						
1,2,4-Trichlorobenzene	< 330		μg/kg wet	330						
1-Methylnaphthalene	< 66.7		μg/kg wet	66.7						
2,4,5-Trichlorophenol	< 330		μg/kg wet	330						
2,4,6-Trichlorophenol	< 167		μg/kg wet	167						
Pentachloronitrobenzene	< 330		μg/kg wet	330						
1,2,4,5-Tetrachlorobenzene	< 330		μg/kg wet	330						
					1670		44	20.420		
Surrogate: 2-Fluorobiphenyl	731		μg/kg wet		1670		44	30-130		
Surrogate: 2-Fluorophenol	1200		μg/kg wet		1670		72	30-130		
Surrogate: Nitrobenzene-d5	1370		μg/kg wet		1670 1670		82	30-130		
Surrogate: Phenol-d5	1160		μg/kg wet		1670		70	30-130		
Surrogate: Terphenyl-dl4	1140		μg/kg wet		1670		68	30-130		
Surrogate: 2,4,6-Tribromophenol	1020		μg/kg wet		1670		61	30-130		
LCS (2001800-BS1)						epared & Ai	nalyzed: 22-			
Acenaphthene	946		μg/kg wet	66.7	1670		57	40-140		
Acenaphthylene	1120		μg/kg wet	66.7	1670		67	40-140		
Aniline	656	QC6	μg/kg wet	330	1670		39	40-140		
Anthracene	1210		μg/kg wet	66.7	1670		73	40-140		
Azobenzene/Diphenyldiazene	1440		μg/kg wet	330	1670		87	40-140		
Benzidine	211	QC6	μg/kg wet	660	1670		13	40-140		
Benzo (a) anthracene	1350		μg/kg wet	66.7	1670		81	40-140		
Benzo (a) pyrene	1430		μg/kg wet	66.7	1670		86	40-140		
Benzo (b) fluoranthene	1550		μg/kg wet	66.7	1670		93	40-140		
Benzo (g,h,i) perylene	1490		μg/kg wet	66.7	1670		89	40-140		
Benzo (k) fluoranthene	1230		μg/kg wet	66.7	1670		74	40-140		
Benzoic acid	262	QC6	μg/kg wet	330	1670		16	30-130		
Benzyl alcohol	1070		μg/kg wet	330	1670		64	40-140		
Bis(2-chloroethoxy)methane	1220		μg/kg wet	330	1670		73	40-140		
Bis(2-chloroethyl)ether	1060		μg/kg wet	167	1670		64	40-140		
Bis(2-chloroisopropyl)ether	874		μg/kg wet	167	1670		52	40-140		
Bis(2-ethylhexyl)phthalate	1260		μg/kg wet	167	1670		76	40-140		
4-Bromophenyl phenyl ether	329	QC6	μg/kg wet	330	1670		20	40-140		
Butyl benzyl phthalate	1330		μg/kg wet	330	1670		80	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
LCS (2001800-BS1)					Pre	epared & Ai	nalyzed: 22-	Sep-20		
Carbazole	1290		μg/kg wet	167	1670		77	40-140		
4-Chloro-3-methylphenol	1360		μg/kg wet	330	1670		82	30-130		
4-Chloroaniline	845		μg/kg wet	167	1670		51	40-140		
2-Chloronaphthalene	1180		μg/kg wet	330	1670		71	40-140		
2-Chlorophenol	987		μg/kg wet	167	1670		59	30-130		
4-Chlorophenyl phenyl ether	1280		μg/kg wet	330	1670		77	40-140		
Chrysene	1240		μg/kg wet	66.7	1670		75	40-140		
Dibenzo (a,h) anthracene	1450		μg/kg wet	66.7	1670		87	40-140		
Dibenzofuran	1180		μg/kg wet	167	1670		71	40-140		
1,2-Dichlorobenzene	1320		μg/kg wet	330	1670		79	40-140		
1,3-Dichlorobenzene	1190		μg/kg wet	330	1670		72	40-140		
1,4-Dichlorobenzene	1170		μg/kg wet	330	1670		70	40-140		
3,3'-Dichlorobenzidine	1260		μg/kg wet	330	1670		76	40-140		
2,4-Dichlorophenol	1260		μg/kg wet	167	1670		76	30-130		
Diethyl phthalate	1070		μg/kg wet	330	1670		64	40-140		
Dimethyl phthalate	1250		μg/kg wet	330	1670		75	40-140		
2,4-Dimethylphenol	1080		μg/kg wet	330	1670		65	30-130		
Di-n-butyl phthalate	1140		μg/kg wet	330	1670		69	40-140		
4,6-Dinitro-2-methylphenol	907		μg/kg wet	330	1670		54	30-130		
2,4-Dinitrophenol	584		μg/kg wet	330	1670		35	30-130		
2,4-Dinitrotoluene	1200		μg/kg wet	167	1670		72	40-140		
2,6-Dinitrotoluene	1340		μg/kg wet	167	1670		80	40-140		
Di-n-octyl phthalate	1250		μg/kg wet	330	1670		75	40-140		
Fluoranthene	816		μg/kg wet μg/kg wet	66.7	1670		49	40-140		
Fluorene	1100			66.7	1670		66	40-140		
Hexachlorobenzene	1520		μg/kg wet	167	1670		91	40-140		
Hexachlorobutadiene			μg/kg wet					40-140		
	1300		μg/kg wet	167	1670		78 79			
Hexachlorocyclopentadiene	1310		μg/kg wet	167	1670		78 70	40-140 40-140		
Hexachloroethane	1170		μg/kg wet	167	1670		70			
Indeno (1,2,3-cd) pyrene	1690		μg/kg wet	66.7	1670		101	40-140		
Isophorone	1050		μg/kg wet	167	1670		63	40-140		
2-Methylnaphthalene	986		μg/kg wet	66.7	1670		59	40-140		
2-Methylphenol	1120		μg/kg wet	330	1670		67	30-130		
3 & 4-Methylphenol	1060		μg/kg wet	330	1670		64	30-130		
Naphthalene	1170		μg/kg wet	66.7	1670		70	40-140		
2-Nitroaniline	932		μg/kg wet	330	1670		56	40-140		
3-Nitroaniline	794		μg/kg wet	330	1670		48	40-140		
4-Nitroaniline	1180		μg/kg wet	167	1670		71	40-140		
Nitrobenzene	1340		μg/kg wet	167	1670		80	40-140		
2-Nitrophenol	1110		μg/kg wet	167	1670		67	30-130		
4-Nitrophenol	1180		μg/kg wet	1320	1670		71	30-130		
N-Nitrosodimethylamine	988		μg/kg wet	167	1670		59	40-140		
N-Nitrosodi-n-propylamine	870		μg/kg wet	167	1670		52	40-140		
N-Nitrosodiphenylamine	1500		μg/kg wet	330	1670		90	40-140		
Pentachlorophenol	933		μg/kg wet	330	1670		56	30-130		
Phenanthrene	1190		μg/kg wet	66.7	1670		71	40-140		
Phenol	1290		μg/kg wet	330	1670		77	30-130		
Pyrene	811		μg/kg wet	66.7	1670		49	40-140		
Pyridine	546	QC6	μg/kg wet	330	1670		33	40-140		
1,2,4-Trichlorobenzene	1380		μg/kg wet	330	1670		83	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8270D										
atch 2001800 - SW846 3546										
LCS (2001800-BS1)					Pre	epared & A	nalyzed: 22-	Sep-20		
1-Methylnaphthalene	959		μg/kg wet	66.7	1670		58	40-140		
2,4,5-Trichlorophenol	1130		μg/kg wet	330	1670		68	30-130		
2,4,6-Trichlorophenol	872		μg/kg wet	167	1670		52	30-130		
Pentachloronitrobenzene	1470		μg/kg wet	330	1670		88	40-140		
1,2,4,5-Tetrachlorobenzene	1080		μg/kg wet	330	1670		65	40-140		
Surrogate: 2-Fluorobiphenyl	827		μg/kg wet		1670		50	30-130		
Surrogate: 2-Fluorophenol	1010		μg/kg wet		1670		60	30-130		
Surrogate: Nitrobenzene-d5	1180		μg/kg wet		1670		71	30-130		
Surrogate: Phenol-d5	1130		μg/kg wet		1670		68	30-130		
Surrogate: Terphenyl-dl4	1280		μg/kg wet		1670		77	30-130		
Surrogate: 2,4,6-Tribromophenol	1180		μg/kg wet		1670		71	30-130		
LCS Dup (2001800-BSD1)					Pre	epared & A	nalyzed: 22-	Sep-20		
Acenaphthene	1080		μg/kg wet	66.7	1670		65	40-140	13	30
Acenaphthylene	1170		μg/kg wet	66.7	1670		70	40-140	4	30
Aniline	686		μg/kg wet	330	1670		41	40-140	5	30
Anthracene	1320		μg/kg wet	66.7	1670		79	40-140	8	30
Azobenzene/Diphenyldiazene	1500		μg/kg wet	330	1670		90	40-140	4	30
Benzidine	221	QC6	μg/kg wet	660	1670		13	40-140	4	30
Benzo (a) anthracene	1490		μg/kg wet	66.7	1670		89	40-140	10	30
Benzo (a) pyrene	1590		μg/kg wet	66.7	1670		96	40-140	10	30
Benzo (b) fluoranthene	1740		μg/kg wet	66.7	1670		104	40-140	11	30
Benzo (g,h,i) perylene	1620		μg/kg wet	66.7	1670		97	40-140	8	30
Benzo (k) fluoranthene	1330		μg/kg wet	66.7	1670		80	40-140	8	30
Benzoic acid	322	QC6	μg/kg wet	330	1670		19	30-130	21	30
Benzyl alcohol	1170		μg/kg wet	330	1670		70	40-140	9	30
Bis(2-chloroethoxy)methane	1170		μg/kg wet	330	1670		70	40-140	4	30
Bis(2-chloroethyl)ether	1030		μg/kg wet	167	1670		62	40-140	3	30
Bis(2-chloroisopropyl)ether	858		μg/kg wet	167	1670		51	40-140	2	30
Bis(2-ethylhexyl)phthalate	1370		μg/kg wet	167	1670		82	40-140	8	30
4-Bromophenyl phenyl ether	354	QC6	μg/kg wet	330	1670		21	40-140	7	30
Butyl benzyl phthalate	1430		μg/kg wet	330	1670		86	40-140	7	30
Carbazole	1400		μg/kg wet	167	1670		84	40-140	8	30
4-Chloro-3-methylphenol	1410		μg/kg wet	330	1670		84	30-130	3	30
4-Chloroaniline	877		μg/kg wet	167	1670		53	40-140	4	30
2-Chloronaphthalene	1200		μg/kg wet	330	1670		72	40-140	2	30
2-Chlorophenol	1060		μg/kg wet	167	1670		63	30-130	7	30
4-Chlorophenyl phenyl ether	1300		μg/kg wet	330	1670		78	40-140	1	30
Chrysene	1310		μg/kg wet	66.7	1670		79	40-140	5	30
Dibenzo (a,h) anthracene	1540		μg/kg wet	66.7	1670		93	40-140	6	30
Dibenzofuran	1270		μg/kg wet	167	1670		76	40-140	7	30
1,2-Dichlorobenzene	1270		μg/kg wet	330	1670		76	40-140	4	30
1,3-Dichlorobenzene	1130		μg/kg wet	330	1670		68	40-140	5	30
1,4-Dichlorobenzene	1250		μg/kg wet	330	1670		75	40-140	7	30
3,3'-Dichlorobenzidine	1380		μg/kg wet	330	1670		83	40-140	8	30
2,4-Dichlorophenol	1310		μg/kg wet	167	1670		78	30-130	3	30
Diethyl phthalate	1150		μg/kg wet	330	1670		69	40-140	7	30
Dimethyl phthalate	1330		μg/kg wet	330	1670		80	40-140	7	30
2,4-Dimethylphenol	1080		μg/kg wet	330	1670		65	30-130	0.09	30
Di-n-butyl phthalate	1260		μg/kg wet	330	1670		75	40-140	9	30
4,6-Dinitro-2-methylphenol	992		μg/kg wet	330	1670		60	30-130	9	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8270D										
atch 2001800 - SW846 3546										
LCS Dup (2001800-BSD1)					Pre	epared & Ai	nalyzed: 22-	-Sep-20		
2,4-Dinitrophenol	709		μg/kg wet	330	1670		43	30-130	19	30
2,4-Dinitrotoluene	1260		μg/kg wet	167	1670		76	40-140	5	30
2,6-Dinitrotoluene	1350		μg/kg wet	167	1670		81	40-140	1	30
Di-n-octyl phthalate	1400		μg/kg wet	330	1670		84	40-140	12	30
Fluoranthene	880		μg/kg wet	66.7	1670		53	40-140	8	30
Fluorene	1150		μg/kg wet	66.7	1670		69	40-140	5	30
Hexachlorobenzene	1620		μg/kg wet	167	1670		97	40-140	7	30
Hexachlorobutadiene	1230		μg/kg wet	167	1670		74	40-140	5	30
Hexachlorocyclopentadiene	1310		μg/kg wet	167	1670		79	40-140	0.2	30
Hexachloroethane	1180		μg/kg wet	167	1670		71	40-140	0.7	30
Indeno (1,2,3-cd) pyrene	1840		μg/kg wet μg/kg wet	66.7	1670		110	40-140	9	30
Isophorone	1020		μg/kg wet μg/kg wet	167	1670		61	40-140	3	30
2-Methylnaphthalene	1000		μg/kg wet μg/kg wet	66.7	1670		60	40-140	1	30
2-Methylphenol	1110			330	1670		67	30-130	0.7	30
3 & 4-Methylphenol			µg/kg wet	330	1670		69	30-130	9	30
• •	1160		μg/kg wet				68			30
Naphthalene 2-Nitroaniline	1140		μg/kg wet	66.7	1670			40-140	3 12	
	1050		μg/kg wet	330	1670		63	40-140		30
3-Nitroaniline	886		μg/kg wet	330	1670		53	40-140	11	30
4-Nitroaniline	1270		μg/kg wet	167	1670		76 	40-140	8	30
Nitrobenzene	1290		μg/kg wet	167	1670		77	40-140	4	30
2-Nitrophenol	1060		μg/kg wet	167	1670		64	30-130	5	30
4-Nitrophenol	1290		μg/kg wet	1320	1670		77	30-130	9	30
N-Nitrosodimethylamine	905		μg/kg wet	167	1670		54	40-140	9	30
N-Nitrosodi-n-propylamine	874		μg/kg wet	167	1670		52	40-140	0.4	30
N-Nitrosodiphenylamine	1590		µg/kg wet	330	1670		95	40-140	6	30
Pentachlorophenol	1060		μg/kg wet	330	1670		64	30-130	13	30
Phenanthrene	1300		μg/kg wet	66.7	1670		78	40-140	9	30
Phenol	1070		μg/kg wet	330	1670		64	30-130	18	30
Pyrene	873		μg/kg wet	66.7	1670		52	40-140	7	30
Pyridine	710		μg/kg wet	330	1670		43	40-140	26	30
1,2,4-Trichlorobenzene	1350		μg/kg wet	330	1670		81	40-140	3	30
1-Methylnaphthalene	1020		μg/kg wet	66.7	1670		61	40-140	6	30
2,4,5-Trichlorophenol	1180		μg/kg wet	330	1670		71	30-130	5	30
2,4,6-Trichlorophenol	925		μg/kg wet	167	1670		55	30-130	6	30
Pentachloronitrobenzene	1540		μg/kg wet	330	1670		92	40-140	5	30
1,2,4,5-Tetrachlorobenzene	1150		μg/kg wet	330	1670		69	40-140	6	30
Surrogate: 2-Fluorobiphenyl	816		μg/kg wet		1670		49	30-130		
Surrogate: 2-Fluorophenol	1060		μg/kg wet		1670		63	30-130		
Surrogate: Nitrobenzene-d5	1180		μg/kg wet		1670		71	30-130		
Surrogate: Phenol-d5	1120		μg/kg wet		1670		67	30-130		
Surrogate: Terphenyl-dl4	1380		μg/kg wet		1670		83	30-130		
Surrogate: 2,4,6-Tribromophenol	1250		μg/kg wet		1670		75	30-130		
	.200	R01		50201 01		anarod & Ai	nalyzed: 22-			
Duplicate (2001800-DUP1) Acenaphthene	< 377		Source: SC	377	<u> </u>	BRL	iaiyzeu. ZZ-	- <u>och-zu</u>		30
·			µg/kg dry						e	
Acenaphthylene	494		μg/kg dry	377		527 BBI			6	30
Aniline	< 1870		μg/kg dry	1870		BRL			00	30
Anthracene	270	J	μg/kg dry	377		361			29	30
Azobenzene/Diphenyldiazene	< 1870		μg/kg dry	1870		BRL				30
Benzidine	< 3730		μg/kg dry	3730		BRL				30
Benzo (a) anthracene	867		μg/kg dry	377		1050			19	30

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8270D										
Satch 2001800 - SW846 3546										
Duplicate (2001800-DUP1)		R01	Source: SC	<u>59391-01</u>	Pre	epared & Ar	nalyzed: 22-	Sep-20		
Benzo (a) pyrene	1000		μg/kg dry	377		1290			25	30
Benzo (b) fluoranthene	892		μg/kg dry	377		980			9	30
Benzo (g,h,i) perylene	852		μg/kg dry	377		1090			24	30
Benzo (k) fluoranthene	545	QR9	μg/kg dry	377		909			50	30
Benzoic acid	516	J	μg/kg dry	1870		578			11	30
Benzyl alcohol	< 1870		μg/kg dry	1870		BRL				30
Bis(2-chloroethoxy)methane	< 1870		μg/kg dry	1870		BRL				30
Bis(2-chloroethyl)ether	< 944		μg/kg dry	944		BRL				30
Bis(2-chloroisopropyl)ether	< 944		μg/kg dry	944		BRL				30
Bis(2-ethylhexyl)phthalate	< 944		μg/kg dry	944		BRL				30
4-Bromophenyl phenyl ether	< 1870		μg/kg dry	1870		BRL				30
Butyl benzyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Carbazole	< 944		μg/kg dry	944		BRL				30
4-Chloro-3-methylphenol	< 1870		μg/kg dry	1870		BRL				30
4-Chloroaniline	< 944		μg/kg dry μg/kg dry	944		BRL				30
2-Chloronaphthalene	< 1870		μg/kg dry μg/kg dry	1870		BRL				30
2-Chlorophenol	< 944		μg/kg dry μg/kg dry	944		BRL				30
4-Chlorophenyl phenyl ether	< 1870			1870		BRL				30
			μg/kg dry						20	30
Chrysene	829	J	μg/kg dry	377		1010				
Dibenzo (a,h) anthracene	281	J	μg/kg dry	377		367			27	30
Dibenzofuran	< 944		μg/kg dry " .	944		BRL				30
1,2-Dichlorobenzene	< 1870		μg/kg dry " .	1870		BRL				30
1,3-Dichlorobenzene	< 1870		μg/kg dry " .	1870		BRL				30
1,4-Dichlorobenzene	< 1870		μg/kg dry 	1870		BRL				30
3,3´-Dichlorobenzidine	< 1870		μg/kg dry 	1870		BRL				30
2,4-Dichlorophenol	< 944		μg/kg dry	944		BRL				30
Diethyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Dimethyl phthalate	< 1870		μg/kg dry	1870		BRL				30
2,4-Dimethylphenol	< 1870		μg/kg dry	1870		BRL				30
Di-n-butyl phthalate	< 1870		μg/kg dry	1870		BRL				30
4,6-Dinitro-2-methylphenol	< 1870		μg/kg dry	1870		BRL				30
2,4-Dinitrophenol	< 1870		μg/kg dry	1870		320				30
2,4-Dinitrotoluene	< 944		μg/kg dry	944		BRL				30
2,6-Dinitrotoluene	< 944		μg/kg dry	944		BRL				30
Di-n-octyl phthalate	< 1870		μg/kg dry	1870		BRL				30
Fluoranthene	899		μg/kg dry	377		848			6	30
Fluorene	< 377		μg/kg dry	377		BRL				30
Hexachlorobenzene	< 944		μg/kg dry	944		BRL				30
Hexachlorobutadiene	< 944		μg/kg dry	944		BRL				30
Hexachlorocyclopentadiene	< 944		μg/kg dry	944		BRL				30
Hexachloroethane	< 944		μg/kg dry	944		BRL				30
Indeno (1,2,3-cd) pyrene	714		μg/kg dry	377		905			24	30
Isophorone	< 944		μg/kg dry	944		BRL				30
2-Methylnaphthalene	< 377		μg/kg dry	377		BRL				30
2-Methylphenol	< 1870		μg/kg dry	1870		BRL				30
3 & 4-Methylphenol	< 1870		μg/kg dry	1870		BRL				30
Naphthalene	< 377		μg/kg dry	377		BRL				30
2-Nitroaniline	< 1870		μg/kg dry	1870		BRL				30
3-Nitroaniline	< 1870		μg/kg dry	1870		BRL				30
4-Nitroaniline	< 944		μg/kg dry	944		BRL				30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 2001800 - SW846 3546										
<u>Duplicate (2001800-DUP1)</u>		R01	Source: SC	<u>59391-01</u>	Pre	epared & Ar	nalyzed: 22-	-Sep-20		
Nitrobenzene	< 944		μg/kg dry	944		BRL				30
2-Nitrophenol	< 944		μg/kg dry	944		BRL				30
4-Nitrophenol	< 7460		μg/kg dry	7460		BRL				30
N-Nitrosodimethylamine	< 944		μg/kg dry	944		BRL				30
N-Nitrosodi-n-propylamine	< 944		μg/kg dry	944		BRL				30
N-Nitrosodiphenylamine	< 1870		μg/kg dry	1870		BRL				30
Pentachlorophenol	< 1870		μg/kg dry	1870		BRL				30
Phenanthrene	303	J,QR4	μg/kg dry	377		455			40	30
Phenol	< 1870		μg/kg dry	1870		BRL				30
Pyrene	1010		μg/kg dry	377		835			19	30
Pyridine	< 1870		μg/kg dry	1870		BRL				30
1,2,4-Trichlorobenzene	< 1870		μg/kg dry	1870		BRL				30
1-Methylnaphthalene	< 377		μg/kg dry	377		BRL				30
2,4,5-Trichlorophenol	< 1870		μg/kg dry	1870		BRL				30
2,4,6-Trichlorophenol	< 944		μg/kg dry	944		BRL				30
Pentachloronitrobenzene	< 1870		μg/kg dry	1870		BRL				30
1,2,4,5-Tetrachlorobenzene	< 1870		μg/kg dry	1870		BRL				30
Surrogate: 2-Fluorobiphenyl	1490		μg/kg dry		1880		79	30-130		
Surrogate: 2-Fluorophenol	1550		μg/kg dry		1880		82	30-130		
Surrogate: Nitrobenzene-d5	1560		μg/kg dry		1880		83	30-130		
Surrogate: Phenol-d5	1600		μg/kg dry		1880		85	30-130		
Surrogate: Terphenyl-dl4	1380		μg/kg dry		1880		73	30-130		
Surrogate: 2,4,6-Tribromophenol	1180		μg/kg dry		1880		63	30-130		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8100Mod.										
Batch 2001798 - SW846 3546										
Blank (2001798-BLK1)					Pro	epared & Aı	nalyzed: 22-	-Sep-20		
Total Petroleum Hydrocarbons	< 13.3		mg/kg wet	13.3						
Surrogate: o-Terphenyl	4.67		mg/kg wet		6.67		70	40-140		
Surrogate: 1-Chlorooctadecane	5.53		mg/kg wet		6.67		83	40-140		
LCS (2001798-BS1)					Prepared & Analyzed: 22-Sep-20					
Total Petroleum Hydrocarbons	265		mg/kg wet	13.3	333		79	40-140		
Surrogate: o-Terphenyl	5.65		mg/kg wet		6.67		85	40-140		
Surrogate: 1-Chlorooctadecane	6.13		mg/kg wet		6.67		92	40-140		
LCS Dup (2001798-BSD1)					Pre	epared & A	nalyzed: 22-	-Sep-20		
Total Petroleum Hydrocarbons	254		mg/kg wet	13.3	333		76	40-140	4	30
Surrogate: o-Terphenyl	5.44		mg/kg wet		6.67		82	40-140		
Surrogate: 1-Chlorooctadecane	5.92		mg/kg wet		6.67		89	40-140		

$Total\ Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 6010C										
atch 2001784 - SW846 3050B										
Blank (2001784-BLK1)					Pre	epared: 22-	Sep-20 Ar	nalyzed: 23-S	ep-20	
Arsenic	< 1.56		mg/kg wet	1.56						
Cadmium	< 0.521		mg/kg wet	0.521						
Chromium	< 1.04		mg/kg wet	1.04						
Lead	< 1.56		mg/kg wet	1.56						
Selenium	< 1.56		mg/kg wet	1.56						
Silver	< 3.12		mg/kg wet	3.12						
Sulfur	< 26.0		mg/kg wet	26.0						
Barium	< 1.04		mg/kg wet	1.04						
LCS (2001784-BS1)					Pre	epared: 22-	Sep-20 Ar	nalyzed: 23-S	ep-20	
Sulfur	113		mg/kg wet	26.2	131	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	87	85-115	<u> </u>	
LCS Dup (2001784-BSD1)			5 5			nared: 22		nalyzed: 23-S	en-20	
Sulfur	110		mg/kg wet	25.2	126	parca. ZZ	87	85-115	3	30
Duplicate (2001784-DUP1)	110					pared: 22		nalyzed: 23-S		00
Arsenic	22.7		Source: SC: mg/kg dry	1.71	<u> </u>	23.3	36p-20 Ai	iaiyzeu. 25-0	2	20
Cadmium	< 0.570		mg/kg dry	0.570		BRL			2	20
Chromium	18.8		mg/kg dry	1.14		17.7			6	20
Lead	20.6		mg/kg dry	1.71		20.1			2	20
Selenium	< 1.71		mg/kg dry	1.71		BRL			2	20
Silver	< 3.42		mg/kg dry	3.42		BRL				20
Sulfur	207		mg/kg dry	28.5		184			12	20
Barium	56.9		mg/kg dry	1.14		55.5			2	20
	30.3				Dra		Can 20 Ar	aluzadi 02 C		20
Matrix Spike (2001784-MS1) Arsenic	145		Source: SC	1.71	142	23.3	85	nalyzed: 23-S 75-125	ep-20	
Cadmium	119		mg/kg dry	0.569	142	BRL	83	75-125 75-125		
Chromium	157		mg/kg dry mg/kg dry	1.14	142	17.7	98	75-125 75-125		
Lead	136			1.71	142	20.1	81	75-125 75-125		
Selenium	117		mg/kg dry	1.71	142	BRL	82	75-125 75-125		
Silver	96.8	QM7	mg/kg dry mg/kg dry	3.42	142	BRL	68	75-125 75-125		
Sulfur	294	QIVII	mg/kg dry	28.5	142	184	77	70-130		
Barium	294		mg/kg dry	1.14	142	55.5	108	75-135 75-125		
	210								on 20	
Matrix Spike Dup (2001784-MSD1)	445		Source: SC					nalyzed: 23-S		20
Arsenic Cadmium	145		mg/kg dry	1.71	143	23.3	85	75-125	0.4	20
Cadmium	118		mg/kg dry	0.571 1.14	143 143	BRL 17.7	82 95	75-125 75-125	0.8 2	20 20
	154		mg/kg dry			17.7 20.1				20
Lead Selenium	147 120		mg/kg dry mg/kg dry	1.71 1.71	143 143	20.1 BRL	89 84	75-125 75-125	8 2	20
		QM7						75-125 75-125		
Silver Sulfur	93.9 289	QIVII	mg/kg dry mg/kg dry	3.43 28.5	143 143	BRL 184	66 74	75-125	3 1	20 20
Barium	197		mg/kg dry	1.14	143	55.5	99	75-125	6	20
	191									20
Post Spike (2001784-PS1)	405		Source: SC					nalyzed: 23-S	ep-20	
Arsenic	165		mg/kg dry	1.84	153	23.3	92	80-120		
Cadmium	139		mg/kg dry	0.612	153	BRL	91	80-120		
Chromium	174		mg/kg dry	1.22	153	17.7	102	80-120		
Lead	155		mg/kg dry	1.84	153	20.1	88	80-120		
Selenium	136		mg/kg dry	1.84	153	BRL	89	80-120		
Sulfur	310		mg/kg dry	30.6	153	184	82	80-120		
Barium	205		mg/kg dry	1.22	153	55.5	98	80-120		
Reference (2001784-SRM1)						epared: 22-		nalyzed: 23-S	ep-20	
Arsenic	85.4		mg/kg wet	1.50	105		82	70.1-107. 7		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
Batch 2001784 - SW846 3050B										
Reference (2001784-SRM1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 23-S	ep-20	
Cadmium	120		mg/kg wet	0.500	150		80	70.2-106. 7		
Chromium	136		mg/kg wet	1.00	156		87	72.3-111.6		
Lead	80.8		mg/kg wet	1.50	93.0		87	73-116.9		
Selenium	35.4		mg/kg wet	1.50	45.4		78	74.1-112. 2		
Silver	33.8		mg/kg wet	3.00	41.3		82	69.3-117. 3		
Barium	293		mg/kg wet	1.00	322		91	77.2-110. 3		
Reference (2001784-SRM2)					Pre	epared: 22-S	Sep-20 A	nalyzed: 23-S	ep-20	
Arsenic	78.1		mg/kg wet	1.50	101		78	70.1-107. 7		
Cadmium	112		mg/kg wet	0.500	144		77	70.2-106. 7		
Chromium	129		mg/kg wet	1.00	150		86	72.3-111.6		
Lead	76.8		mg/kg wet	1.50	89.5		86	73-116.9		
Selenium	32.6		mg/kg wet	1.50	43.7		75	74.1-112. 2		
Silver	32.3		mg/kg wet	3.00	39.7		81	69.3-117. 3		
Barium	268		mg/kg wet	1.00	310		86	77.2-110. 3		
SW846 7471B										
Batch 2001785 - EPA200/SW7000 Series										
Blank (2001785-BLK1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 29-S	ep-20	
Mercury	< 0.0297		mg/kg wet	0.0297						
Reference (2001785-SRM1)					Pre	epared: 22-S	Sep-20 A	nalyzed: 29-S	ep-20	
Mercury	6.22	D	mg/kg wet	0.600	8.81		71	42.1-100		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
7 Hilling te(3)	Result	Tiag Omis	IGDE	Level	Result	70ICLC	Lillito	МЪ	Liiiit
SW846 9012 ReactiveCN									
Batch 551420 - 7.3.3									
<u>Duplicate (1754602X)</u>		Source: S	C59391-02	Pre	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Cyanide, Reactive	< 10	mg/kg	10		BRL		-	NC	20
Blank (5514201AB)				Pre	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Cyanide, Reactive	< 10	mg/kg	10				-		
LCS (5514202AQ)				<u>Pre</u>	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Cyanide, Reactive	304	mg/kg	200	1000		30	10-100		
SW846 9034 Reactive									
Batch 551421 - 7.3.4									
<u>Duplicate (1754602X)</u>		Source: S	C59391-02	Pre	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	< 10	mg/kg	10		BRL		-	NC	20
Blank (5514211AB)				Pre	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	< 10	mg/kg	10				-		
LCS (5514212AQ)				Pre	epared: 27-S	Sep-20 An	alyzed: 28-S	Sep-20	
Sulfide, Reactive	741	mg/kg	10	960		77	10-100		

Notes and Definitions

BsH	Data for this analyte may be biased high based on QC spike recoveries.
D	Data reported from a dilution
IS1	Internal standard out due to matrix interference
QC6	Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QR4	Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results
QR9	RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.
R01	The Reporting Limit has been raised to account for matrix interference.
S02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

SGCMSVOCSurrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

Sample results reported on a dry weight basis dry

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

This laboratory report is not valid without an authorized signature on the cover page.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Special Handling: **eurofins** Standard TAT - 7 to 10 business days **Environment Testing** CHAIN OF CUSTODY RECORD Rush TAT - Date Needed: **New England** All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed. Project No: Site Name: Telephone #: Project Mgr: P.O No.: Quote #: F=Field Filtered 5=NaOH 6=Ascorbic Acid List Preservative Code below: QA/QC Reporting Notes: 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ 11= \Ce * additional charges may appply Containers DW=Drinking Water GW=Groundwater Analysis SW=Surface Water WW=Waste Water MA DEP MCP CAM Report? CT DPH RCP Report? O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air Standard SG=Soil Gas ☐ No QC DQA* # of VOA Vials ASP A* ASP B* 826 976 NJ Reduced* of Plastic G= Grab C=Compsite Tier II* Tier IV* Other: Time: Lab ID: Sample ID: Date: State-specific reporting standards 50 0910 1009 Temp °C EDD format: Relinquished by: Received by: Date: Time: COLON, CALLAJIAN EASTUM KON E-mail to:

Intact

Broken

Soil Jar Frozen

Present

DI VOA Frozen

Custody Seals:

Refrigerated

Condition upon receipt:

Ambient Iced

IR ID#

Refrigerated 9 Soil Jar Frozen DI VOA Frozen Ambient Iced KID# Present Custody Seals: Condition upon receipt: 0/2 + ссеной Растог :ot lism-H EDD format; Relindaished by: Temp oC :amij. Date: Received by: 1216 80 851 040 90-0111 hills 10 6001 50 0160 0012 0580 08/8/16 10-1484575 State-specific reporting standards: Check if chlorinated of Amber Glass Time: Date: Sample ID: Lab ID: of VOA Vials of Clear Glass Other: *VI 19IT C=Compsite C= Cusp *IIna CN N) Reduced* 8 *8 4SA *A q2A OB =IX =£X =7X DQA** No QC Standard SL=Sludge SG=Soil Gas A=Indoor/Ambient Air lioS=OS IiO=O CT DPH RCP Report? DW=Drinking Water MA DEP MCP CAM Report? WW=Waste Water SW=Surface Water GW=Groundwater **sisylanA** Containers 11 b * additional charges may appply 77 =II 7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ QA/QC Reporting Notes: List Preservative Code below: 6=Ascorbic Acid HOBN=2 ENH= 3=HZO 7=HCI I=Na2S2O3 F=Field Filtered P.O No.: Quote #: Project Mgr: Sampler(s): Telephone #: Site Name: dudu Project No: Invoice To: Report To: Samples disposed after 30 days unless otherwise instructed. Min. 24-hr notification needed for rushes All TATs subject to laboratory approval New England Rush TAT - Date Needed: CHYIN OF CUSTODY RECORD **Environment Testing** Standard TAT - 7 to 10 business days sniforus 💸 Special Handling:

W7 16865 25

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC59391-01	TrenchA_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-02	TrenchB_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-03	TrenchD_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-04	TrenchC_0-6	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-05	HDDB_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-06	HDDA_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-07	HDDC_5-10	Volatile Organic Compounds by SW846 8260	9/28/2020
SC59391-08	Trip Blank	Volatile Organic Compounds by SW846 8260	9/28/2020

Batch Summary

SC59391-07 (HDDC 5-10) 2001784 Total Metals by EPA 6000/7000 Series Methods 2001800 2001784-BLK1 Semivolatile Organic Compounds by GCMS 2001784-BS1 2001800-BLK1 2001784-BSD1 2001800-BS1 2001784-DUP1 2001800-BSD1 2001784-MS1 2001800-DUP1 2001784-MSD1 SC59391-01 (TrenchA_0-6) 2001784-PS1 SC59391-02 (TrenchB 0-6) 2001784-SRM1 SC59391-03 (TrenchD 0-6) 2001784-SRM2 SC59391-04 (TrenchC 0-6) SC59391-01 (TrenchA 0-6) SC59391-05 (HDDB 5-10) SC59391-02 (TrenchB 0-6) SC59391-06 (HDDA 5-10) SC59391-03 (TrenchD 0-6) SC59391-07 (HDDC 5-10) SC59391-04 (TrenchC 0-6) SC59391-05 (HDDB 5-10) 2001812 SC59391-06 (HDDA_5-10) **Volatile Organic Compounds** SC59391-07 (HDDC_5-10) 2001812-BLK1 2001785 2001812-BS1 Total Metals by EPA 6000/7000 Series Methods 2001812-BSD1 SC59391-01 (TrenchA 0-6) 2001785-BLK1 SC59391-02 (TrenchB 0-6) 2001785-SRM1 SC59391-03 (TrenchD 0-6) SC59391-01 (TrenchA_0-6) SC59391-04 (TrenchC 0-6) SC59391-02 (TrenchB 0-6) SC59391-05 (HDDB 5-10) SC59391-03 (TrenchD 0-6) SC59391-06 (HDDA 5-10) SC59391-04 (TrenchC 0-6) SC59391-07 (HDDC 5-10) SC59391-05 (HDDB 5-10) SC59391-08 (Trip Blank) SC59391-06 (HDDA 5-10) SC59391-07 (HDDC 5-10) 2001826 2001790 **Volatile Organic Compounds General Chemistry Parameters** 2001826-BLK1 2001826-BS1 SC59391-01 (TrenchA 0-6) 2001826-BSD1 SC59391-02 (TrenchB 0-6) 2001826-MRL1 SC59391-03 (TrenchD 0-6) SC59391-01 (TrenchA 0-6) SC59391-04 (TrenchC 0-6) SC59391-03 (TrenchD 0-6) SC59391-05 (HDDB 5-10) SC59391-04 (TrenchC 0-6) SC59391-06 (HDDA 5-10) SC59391-07 (HDDC_5-10) SC59391-05 (HDDB 5-10) SC59391-06 (HDDA 5-10) 2001798 SC59391-07 (HDDC 5-10) SC59391-08 (Trip Blank) Extractable Petroleum Hydrocarbons 2001798-BLK1 2001880 2001798-BS1 **Volatile Organic Compounds** 2001798-BSD1 2001880-BLK1 SC59391-01 (TrenchA 0-6) 2001880-BS1 SC59391-02 (TrenchB 0-6) 2001880-BSD1 SC59391-03 (TrenchD 0-6) 2001880-MRL1 SC59391-04 (TrenchC 0-6) SC59391-02 (TrenchB 0-6) SC59391-05 (HDDB 5-10)

SC59391-06 (HDDA 5-10)

551420

Subcontracted Analyses

1754602X

5514201AB

5514202AQ

SC59391-01 (TrenchA_0-6)

SC59391-02 (TrenchB_0-6)

SC59391-03 (TrenchD_0-6)

SC59391-04 (TrenchC 0-6)

SC59391-05 (HDDB 5-10)

SC59391-06 (HDDA_5-10)

SC59391-07 (HDDC_5-10)

<u>551421</u>

Subcontracted Analyses

1754602X

5514211AB

5514212AQ

SC59391-01 (TrenchA_0-6)

SC59391-02 (TrenchB_0-6)

SC59391-03 (TrenchD 0-6)

SC59391-04 (TrenchC_0-6)

SC59391-05 (HDDB_5-10)

SC59391-06 (HDDA_5-10)

SC59391-07 (HDDC_5-10)

Appendix E Waste Disposal Documentation - Soil Regulator Station Piping

connect Profile Detail Report

Job ID 1003626 2/1/2021 - 8/19/2021

		tilicili Otilites/i							
Approval	213291109	ESMI	NH						
Ticket	Date		Truck	Plate	Manifest	Gross	Tare	Net	Units
2466013	4/7/2021	9:20 AM	GRAFBROS 294	GRAFBROS 294	04072021R OCHESTE R1	37.61	20.62	16.99	Т
2478712	4/7/2021	11:36 AM	GRAFBROS 294	GRAFBROS 294	04072021R OCHESTE R2	38.78	21.08	17.70	Т
2466014	4/8/2021	7:01 AM	GRAFBROS 294	GRAFBROS 294	04082021R OCHESTE R1	40.86	20.40	20.46	Т
2479705	4/8/2021	9:18 AM	GRAFBROS 294	GRAFBROS 294	04082021R OCHESTE R2	41.02	21.11	19.91	Т
2480160	4/8/2021	11:59 AM	GRAFBROS 294	GRAFBROS 294	04082021R OCHESTE R3	41.59	20.27	21.32	Т
2466015	4/9/2021	7:02 AM	GRAFBROS 294	GRAFBROS 294	04092021R OCHESTE R1	37.91	20.69	17.22	Т
2481067	4/9/2021	9:22 AM	GRAFBROS 294	GRAFBROS 294	04092021R OCHESTE R2	41.22	20.52	20.70	Т
2481521	4/9/2021	12:05 PM	GRAFBROS 294	GRAFBROS 294	04092021R OCHESTE R3	40.18	20.55	19.63	Т
2466016	4/12/2021	7:07 AM	GRAFBROS 294	GRAFBROS 294	04122021R OCHESTE R1	39.45	20.22	19.23	Т

2482348	4/12/2021	9:34 AM	GRAFBROS 294	GRAFBROS 294	04122021R OCHESTE R2	40.64	20.39	20.25	Т
2482680	4/12/2021	11:56 AM	GRAFBROS 294	GRAFBROS 294	04122021R OCHESTE R3	42.48	21.05	21.43	Т
2466017	4/13/2021	7:01 AM	GRAFBROS 294	GRAFBROS 294	041321RO CHESTER1	35.51	21.13	14.38	Т
2483496	4/13/2021	9:23 AM	GRAFBROS 294	GRAFBROS 294	041321RO CHESTER2	43.33	20.46	22.87	T
2483826	4/13/2021	11:48 AM	GRAFBROS 294	GRAFBROS 294	041321RO CHESTER3	38.21	21.00	17.21	T
2466018	4/14/2021	7:02 AM	GRAFBROS 294	GRAFBROS 294	41421ROC HESTER1	42.42	20.39	22.03	Т
2484658	4/14/2021	9:22 AM	GRAFBROS 294	GRAFBROS 294	41421ROC HESTER2	40.21	20.80	19.41	T
2484991	4/14/2021	11:40 AM	GRAFBROS 294	GRAFBROS 294	41421ROC HESTER3	42.07	20.28	21.79	T
2466019	4/15/2021	7:18 AM	GRAFBROS 294	GRAFBROS 294	41521ROC HESTER1	42.71	21.13	21.58	T
2485928	4/15/2021	9:50 AM	GRAFBROS 294	GRAFBROS 294	41521ROC HESTER2	37.96	21.08	16.88	Т
2486309	4/15/2021	12:23 PM	GRAFBROS 294	GRAFBROS 294	41521ROC HESTER3	43.64	21.21	22.43	Т
2466020	4/16/2021	6:58 AM	GRAFBROS 294	GRAFBROS 294	041621RO CHESTER1	37.72	20.53	17.19	Т
2487106	4/16/2021	9:39 AM	GRAFBROS 294	GRAFBROS 294	41621ROC HESTER2	32.13	20.91	11.22	Т

2487468	4/16/2021	12:16 PM	GRAFBROS 280	GRAFBROS 280	41621ROC HESTER3	34.20	21.00	13.20	Т
2466021	4/19/2021	8:14 AM	GRAFBROS 280	GRAFBROS 280	041921RO CHESTER1	40.13	17.03	23.10	T
2488717	4/19/2021	11:46 AM	GRAFBROS 280	GRAFBROS 280	41921ROC HESTER2	41.17	17.58	23.59	T
2489036	4/19/2021	2:32 PM	GRAFBROS 280	GRAFBROS 280	41921ROC HESTER3	37.17	17.00	20.17	T
2466022	4/20/2021	7:17 AM	GRAFBROS 280	GRAFBROS 280	42021ROC HESTER1	38.73	17.87	20.86	Т
2489616	4/20/2021	10:12 AM	GRAFBROS 280	GRAFBROS 280	42021ROC HESTER2	36.64	17.53	19.11	Т
2490081	4/20/2021	1:54 PM	GRAFBROS 280	GRAFBROS 280	42021ROC HESTER3	38.19	16.88	21.31	Т
2489511	4/21/2021	7:35 AM	GRAFBROS 280	GRAFBROS 280	42121ROC HESTER	42.21	17.85	24.36	Т
2490966	4/21/2021	10:58 AM	GRAFBROS 280	GRAFBROS 280	42121ROC HESTER2	36.36	17.07	19.29	T
2491431	4/21/2021	2:13 PM	GRAFBROS 280	GRAFBROS 280	42121ROC HESTER3	34.36	17.49	16.87	Т
2489512	4/22/2021	7:41 AM	GRAFBROS 280	GRAFBROS 280	42221ROC HESTER1	41.96	17.01	24.95	T
2492143	4/22/2021	10:26 AM	GRAFBROS 280	GRAFBROS 280	42221ROC HESTER2	36.01	17.44	18.57	T
2492486	4/22/2021	1:02 PM	GRAFBROS 295	GRAFBROS 295	42221ROC HESTER3	40.19	18.23	21.96	T
2492523	4/22/2021	1:17 PM	GRAFBROS 280	GRAFBROS 280	42221ROC HESTER4	36.63	17.01	19.62	Т

2489514	4/26/2021	8:09 AM	GRAFBROS 289	GRAFBROS 289	42621ROC HESTER	40.51	17.48	23.03	Т
2494470	4/26/2021	10:52 AM	GRAFBROS 289	GRAFBROS 289	42621ROC HESTER2	35.45	17.87	17.58	Т
2494889	4/26/2021	1:57 PM	GRAFBROS 289	GRAFBROS 289	42621ROC HESTER3	36.06	17.36	18.70	Т
2489515	4/27/2021	8:24 AM	GRAFBROS 280	GRAFBROS 280	42721ROC HESTER1	33.39	17.47	15.92	Т
2495729	4/27/2021	11:35 AM	GRAFBROS 280	GRAFBROS 280	42721ROC HESTER2	33.19	17.00	16.19	Т
2496040	4/27/2021	2:27 PM	GRAFBROS 280	GRAFBROS 280	42721ROC HESTER3	38.58	17.69	20.89	Т
2489516	4/28/2021	7:50 AM	GRAFBROS 280	GRAFBROS 280	42821ROC HESTER1	38.00	16.70	21.30	Т
2496636	4/28/2021	10:32 AM	GRAFBROS 280	GRAFBROS 280	42821ROC HESTER2	33.16	16.85	16.31	Т
2496947	4/28/2021	1:21 PM	GRAFBROS 280	GRAFBROS 280	42821ROC HESTER3	35.29	17.03	18.26	Т
2489517	4/29/2021	7:41 AM	GRAFBROS 280	GRAFBROS 280	42921ROC HESTER1	32.54	17.42	15.12	Т
2497787	4/29/2021	10:31 AM	GRAFBROS 280	GRAFBROS 280	42921ROC HESTER2	40.66	16.89	23.77	Т
2498195	4/29/2021	1:36 PM	GRAFBROS 280	GRAFBROS 280	42921ROC HESTER3	34.86	16.96	17.90	Т
2489518	4/30/2021	7:34 AM	GRAFBROS 280	GRAFBROS 280	43021ROC HESTER1	37.73	16.81	20.92	Т
2498967	4/30/2021	10:35 AM	GRAFBROS 280	GRAFBROS 280	43021ROC HESTER2	31.77	17.57	14.20	Т

2499333	4/30/2021	1:37 PM	GRAFBROS 280	GRAFBROS 280	43021ROC HESTER3	36.00	17.17	18.83	Т
2496101	5/3/2021	7:43 AM	GRAFBROS 280	GRAFBROS 280	50321ROC HESTER1	36.44	16.81	19.63	T
2500128	5/3/2021	10:27 AM	GRAFBROS 280	GRAFBROS 280	50321ROC HESTER2	32.04	17.39	14.65	Т
2500602	5/3/2021	1:46 PM	GRAFBROS 280	GRAFBROS 280	50321ROC HESTER3	35.11	17.01	18.10	Т
2496102	5/4/2021	8:04 AM	GRAFBROS 280	GRAFBROS 280	50421ROC HESTER1	36.68	17.51	19.17	Т
2501324	5/4/2021	10:43 AM	GRAFBROS 280	GRAFBROS 280	50421ROC HESTER2	35.69	17.51	18.18	Т
2501670	5/4/2021	1:19 PM	GRAFBROS 280	GRAFBROS 280	50421ROC HESTER3	38.02	16.93	21.09	Т
2496103	5/5/2021	7:56 AM	GRAFBROS 280	GRAFBROS 280	50521ROC HESTER1	35.94	17.71	18.23	Т
2502412	5/5/2021	10:37 AM	GRAFBROS 280	GRAFBROS 280	50521ROC HESTER2	38.76	16.86	21.90	T
2502822	5/5/2021	1:53 PM	GRAFBROS 280	GRAFBROS 280	50521ROC HESTER3	35.36	17.22	18.14	T
2496105	5/6/2021	7:56 AM	GRAFBROS 280	GRAFBROS 280	50621ROC HESTER1	34.13	17.47	16.66	T
2503507	5/6/2021	10:41 AM	GRAFBROS 280	GRAFBROS 280	50621ROC HESTER2	34.83	16.93	17.90	Т
2503895	5/6/2021	1:54 PM	GRAFBROS 280	GRAFBROS 280	50621ROC HESTER3	34.25	16.75	17.50	Т
2505453	5/13/2021	8:02 AM	GRAFBROS 280	GRAFBROS 280	51321ROC HESTER1	28.77	16.85	11.92	Т

connect Profile Detail Report

Job ID 1003626 2/1/2021 - 8/19/2021

2508928	5/13/2021	11:00 AM	GRAFBROS 280	GRAFBROS 280	51321ROC HESTER2	35.51	17.28	18.23	Т
2508554	6/1/2021	9:15 AM	GRAFBROS 280	GRAFBROS 280	60121ROC HESTER1	35.02	16.80	18.22	Т
2520250	6/1/2021	12:18 PM	GRAFBROS 280	GRAFBROS 280	60121ROC HESTER2	31.42	16.94	14.48	Т
2520552	6/1/2021	2:51 PM	GRAFBROS 280	GRAFBROS 280	60121ROC HESTER3	34.27	17.38	16.89	Т
2508552	6/2/2021	9:44 AM	GRAFBROS 280	GRAFBROS 280	60221ROC HESTER1	33.48	16.81	16.67	Т
2521282	6/2/2021	12:38 PM	GRAFBROS 280	GRAFBROS 280	60221ROC HESTER2	33.39	17.39	16.00	Т
2521551	6/2/2021	3:33 PM	GRAFBROS 280	GRAFBROS 280	60221ROC HESTER3	36.27	16.89	19.38	Т
2508553	6/3/2021	8:47 AM	GRAFBROS 280	GRAFBROS 280	60321ROC HESTER1	20.82	16.81	4.01	Т
2522024	6/9/2021	9:26 AM	GRAFBROS 280	GRAFBROS 280	60921ROC HESTER1	25.75	17.48	8.27	Т
2525842	6/9/2021	12:14 PM	GRAFBROS 280	GRAFBROS 280	60921ROC HESTER2	22.51	16.92	5.59	Т
2526090	6/9/2021	2:44 PM	GRAFBROS 280	GRAFBROS 280	60921ROC HESTER3	24.01	17.36	6.65	Т
2522025	6/10/2021	1:00 PM	GRAFBROS 280	GRAFBROS 280	61021ROC HESTER1	26.51	17.01	9.50	Т
2527069	6/10/2021	3:36 PM	GRAFBROS 280	GRAFBROS 280	61021ROC HESTER2	26.74	17.44	9.30	Т
2526476	6/11/2021	11:45 AM	GRAFBROS 280	GRAFBROS 280	61121ROC HESTER1	27.09	16.90	10.19	Т

connect Profile Detail Report

Job ID 1003626 2/1/2021 - 8/19/2021

2527868	6/11/2021	2:15 PM	GRAFBROS 280	GRAFBROS 280	61121ROC HESTER2	29.71	17.24	12.47	Т
2527174	6/14/2021	7:36 AM	GRAFBROS 280	GRAFBROS 280	61421ROC HESTER1	30.32	16.97	13.35	Т
2528385	6/14/2021	10:04 AM	GRAFBROS 280	GRAFBROS 280	61421ROC HESTER2	32.45	16.96	15.49	Т
2528697	6/14/2021	12:36 PM	GRAFBROS 280	GRAFBROS 280	61421ROC EHSTER3	28.38	16.92	11.46	Т
2529000	6/14/2021	3:00 PM	GRAFBROS 280	GRAFBROS 280	61421ROC HESTER4	27.51	17.68	9.83	Т
2529007	6/16/2021	7:58 AM	GRAFBROS 280	GRAFBROS 280	61621ROC HESTER1	29.44	16.89	12.55	Т
2530470	6/16/2021	10:31 AM	GRAFBROS 280	GRAFBROS 280	61621ROC HESTER2	30.89	16.81	14.08	Т
2530794	6/16/2021	1:19 PM	GRAFBROS 280	GRAFBROS 280	61621ROC HESTER3	26.20	16.77	9.43	Т
2527667	6/17/2021	11:46 AM	GRAFBROS 280	GRAFBROS 280	61721ROC HESTER1	27.02	17.36	9.66	Т
2532144	6/17/2021	2:15 PM	GRAFBROS 280	GRAFBROS 280	61721ROC HESTER2	26.93	16.89	10.04	Т
2535681	6/30/2021	7:00 AM	GRAFBROS 280	GRAFBROS 280	63021ROC HESTER1	33.61	17.81	15.80	Т
2541684	6/30/2021	9:39 AM	GRAFBROS 280	GRAFBROS 280	63021ROC HESTER2	25.11	16.76	8.35	Т
2576375	8/18/2021	2:17 PM	GRAFBROS 280	GRAFBROS 280	81821roche ster1	31.55	16.99	14.56	Т
2583011	8/19/2021	7:08 AM	GRAFBROS 295	GRAFBROS 295	81921roche ster1	28.49	18.51	9.98	Т
			Number of Loads		92		Sub Total	1,561.2	1

Profile Detail Report

Job ID 1003626 2/1/2021 - 8/19/2021

NRC EAST ENVIRONMENTAL SERVICES, INC. Northern Utilites/Petrolane

Total Number of Loads

92

Total

1,561.21

Report Created 8/23/2021 6:10:54 PM

The State of New Hampshire

DEPARTMENT OF ENVIRONMENTAL SERVICES

Robert R. Scott, Commissioner

EMAIL ONLY

June 30, 2022

Thomas Murphy Unitil Service Corp. 6 Liberty Lane W Hampton, NH 03842-1720

Subject: Rochester – Petrolane/Northern Utilities Site, Route 125

DES Site #198712002, Project #432

November 2020 Water Quality Monitoring Data Submittal, prepared by AECOM, and dated January 8, 2021

Soil Management Report Submittal, prepared by AECOM, and dated October 12, 2021

2020 and 2021 Biennial Water Quality Report and November 2021 Water Monitoring Data Submittal, prepared by AECOM, and dated January 20, 2022

Source Material Investigation Report, prepared by AECOM, and dated January 21, 2022

Dear Thomas Murphy:

New Hampshire Department of Environmental Services (NHDES) has completed its review of the above-referenced reports, as prepared by your environmental consultant, AECOM. These reports conveyed the following:

- The Soil Management Report Submittal describes activities conducted to comply with the
 requirements of the Activity and Use Restriction (AUR) for the site during horizontal drilling to
 connect a proposed new natural gas regulating station on the site to a gas main extension
 located on a property on the eastern side of the Cocheco River.
- The 2020 and 2021 Biennial Water Quality Report (Report) describes sampling and reporting required by the site Groundwater Management Permit GWP-198712002-R-006 (Permit) issued July 2, 2018.
- The Source Material Investigation Report describes the activities and findings of recent investigation work to identify remaining source material and evaluate future remedial actions.

NHDES offers the following comments based on our review of the information provided in the above-referenced documents.

Soil Management Report

NHDES finds that the report is complete, and the construction activities were performed in compliance with the site AUR.

Thomas Murphy DES #198712002 June 30, 2022 Page 2 of 3

November 2020 Data Submittal and 2020 and 2021 Biennial Report

Based on our review of the most-recent water quality data provided (updated through November 2021), we note that the monitoring results generally remain consistent with recent prior findings and that the Report is complete and meets the sampling and reporting requirements detailed in the site Permit.

NHDES notes that a detailed assessment of the effect of the phytoremediation system on groundwater elevation and flow has not been conducted since 2011. Considering the period of time since the last assessment and the current tree die-off from disease observed by AECOM, we request an updated assessment of the effects of the phytoremediation system on site groundwater be included in the next Application for Renewal of Groundwater Management Permit due before July 1, 2023.

Source Material Investigation Report

NHDES concurs with AECOM's recommendation to conduct treatability studies using the bulk samples of impacted site media collected during the Source Material Investigation. Please submit a schedule for performance of the treatability studies and submittal of the proposed Remedial Action Plan within 60 days of the date of this letter.

NHDES notes the following in regard to analytical data included in the Source Material Investigation Report:

- Review of the laboratory analytical reports indicate that some samples were reanalyzed due to
 elevated concentrations of naphthalene that exceeded the calibration range of the initial
 analysis; however, the results from the initial analysis are reported in tables and figures without
 qualifying the data as estimated concentrations. NHDES recommends using data from the
 second, unqualified analysis or qualifying data, as appropriate, if used for future site assessment
 work.
- AECOM notes that benzene was not detected above the laboratory reporting limit at any location; however, benzene was detected in soil samples GP-904(9-11')12-03-2020 (reanalysis), GP-905(5-7')12-03-2020, GP-905(5-7')12-03-2020 (reanalysis), GP-906(16-18')12-04-2020 (reanalysis), and GP-907(21.5-23.5')12-04-2020 (second reanalysis). In addition, the reporting limit exceeded SRS for most of the analyzed samples in which benzene was not detected above the reporting limit. NHDES requests that the treatability studies and RAP consider the benzene data.
- On Figure 4-1, AECOM delineates principal and secondary source areas for groundwater impacts based on observation of non-aqueous phase liquid and/or elevated naphthalene concentrations. NHDES notes that, while the delineated areas may be the primary source of groundwater contamination, based on current and historical soil data, soil impacts with concentrations of volatile organic compounds (VOCs) and semi-VOCs exceeding the Soil Remediation Standards (SRS) extend over a greater portion of the site and will continue to be addressed through the site AUR.

Thomas Murphy DES #198712002 June 30, 2022 Page 3 of 3

Should you have any questions, please contact me at NHDES' Waste Management Division.

Sincerely,

Janya & Jsh Tanya P. Justham

Hazardous Waste Remediation Bureau

Tel: (603) 271-6572

Email: <u>tanya.p.justham@des.nh.gov</u>

ec: Ryan McCarthy, AECOM

Rochester Health Officer

Amy Doherty, P.G., State Sites Supervisor, HWRB

Waste Management Division Digitally signed by Waste Management Division Date: 2022.06.30 17:40:34 -04'00'

COMPANY NAME

NORTHERN UTILITIES, INC.

SOMERSWORTH GAS WORKS

LINE NO.

SCHEDULE 4C

- 1. SITE LOCATION: Main Street and Depot Road in Somersworth, NH
- 2. DATE SITE WAS FIRST INVESTIGATED AS A DISPOSAL SITE:
 The New Hampshire Division of Public Health Services and New Hampshire Water Supply and Pollution Control Commission conducted a preliminary assessment in 1985.
- 3. SUMMARY OF MATERIAL DEVELOPMENTS AND INTERACTIONS WITH ENVIRONMENTAL AUTHORITIES (July 1, 2021 June 30, 2022):
 - Northern directed Wood Environmental (Wood) during the reporting time to continue providing environmental consulting services, focusing on continued groundwater monitoring for the former manufactured gas plant (MGP). In addition, Wood continues to evaluate the effectiveness of the limited excavation, targeted subsurface grouting, and insitu chemical oxidation (ISCO) treatments, which comprise the remediation program. The most recent ISCO treatment (the third overall) was completed in June 2018. Following sampling and report submittal in 2019, the NH DES directed Northern to include future evaluation of the ISCO treatment's effectiveness, as measured by groundwater contaminants, into the Site's Groundwater Monitoring Program (GMP).
 - Wood continued to report that collected data indicated an improvement in groundwater quality following the 2018 ISCO treatment. Persistent low levels of certain contaminants in groundwater were indicative of a residual source mass in the subsurface. In 2011, a supplemental ISCO treatment was delayed to determine if natural attenuation was persistent and sustained. However, collected data from 2013 through 2016 reported repetitive benzene and naphthalene peaks, which required the completion of a third ISCO treatment, as detailed in the initial remediation design for the Site.
 - Northern directed Wood to continue sampling groundwater from the four, additional monitoring wells installed in 2014 because of the repetitive benzene and naphthalene peaks during the fall sampling events. Reduced peaks were detected once again during the reporting time period (fall 2021). The NH DES was notified of the results and continued to direct Northern to sample groundwater from the underlying bedrock for the presence of MGP contaminants. Results reported contaminant levels below concern levels, and Northern continues to petition the NH DES to formerly close the four monitoring wells with no authorization granted during the reporting time period.
 - Northern directed Wood to sample the groundwater in the underlying bedrock from three locations, as detailed previously by the NH DES with the next groundwater sampling and report submittal due to the NH DES on the effectiveness of the ISCO treatment scheduled for late 2022.

4. NEW HAMPSHIRE SITE REMEDIATION PROGRAM PHASE:

The former Somersworth Gas Works continues to implement the remediation design and monitor its progress via the GMP overseen by the NH DES.

5. NATURE AND SCOPE OF SITE CONTAMINATION:

The very small footprint of the former Somersworth Gas Works made it unlikely that significant amounts of MGP residuals were used as fill on-site. The extensive test-pit program substantiated the assertion that significant amounts of MGP residuals were not used as on-site fill. Coal tars and liquids that may have accumulated in sub-grade vessels did not result in substantial releases, as indicated by the absence of any significant oil-like material in test pits and borings in the upper 10 to 15 feet of soil at the site. Most of the Northern parcel is now covered with re-graded soil from local street work and capped by four (4) inches of imported topsoil.

As indicated by the site-specific groundwater quality data, metals and heavy-weighted polyaromatic hydrocarbons (PAHs) detected in soil have not leached into the underlying groundwater at significant concentrations. However, two suspected sources of lighter-weight PAHs (e.g., naphthalene) and volatile organic compounds (VOCs) detected in groundwater were identified in excess of regulated levels. The suspected sources were two, former gasholders on at the site. Oily residuals of limited extent were found in soil at depth below these holders. This material has been in periodic contact with the fluctuating water table. Due to the MGP operations having ceased more than 70 years ago, the period of rapid degradation of MGP-related chemicals in groundwater has probably occurred. The relatively stable groundwater quality data are indicative of residual source materials undergoing natural biodegradation.

Northern contracted with Wood (formerly Amec Foster Wheeler) to act as prime contractor for design and remediation services. Earthwork activities were awarded to ENPRO and were completed in April 2005. This consisted of the removal of subsurface bodies of tar and the jet grouting of a small area of MGP-impacted soil below a foundation floor. Northern and Amec Foster Wheeler awarded Geo-Cleanse Internal, Inc. the subcontract for the remediation of soil and groundwater using ISCO technology. The installation of oxidant injector wells and the first round of oxidant injection were completed in June 2005. Subsequent injections were conducted in September 2005, May 2006, and November 2006. A notice of an Activity and Use Restrictions (AUR) was been placed on the deed associated with the site.

At the direction of the NH DES, Northern conducted another ISCO treatment during the first half of 2018 to address the continuing PAH and VOC peaks. Natural attenuation remains the preferred approach to long-term remediation of the site. However and following this ISCO treatment, the NH DES has required Northern to sample groundwater from the underlying bedrock for the presence of MGP contaminants. This represents a shift in the site's monitoring requirements from exclusively within the overburden to now the overburden/bedrock. Although Northern is confident the recent ISCO treatment was designed to include the underlying bedrock, groundwater transmissivity through this strata is slow and will likely require additional monitoring time to determine a reduction of the contaminants.

7. HISTORY AND CURRENT STATUS OF USE AND OWNERSHIP OF SITE:

Available information indicates that the former gas works began operation as the Great Falls Gas Light Company in 1856 and may have been associated with the mills of the Great Falls Manufacturing Company. The gas company leased two small parcels from the Great Falls Manufacturing Company in 1907, one to the north and one to the south of the main plant site. The plant was deeded to the Strafford-York Gas Company in 1911, which was a predecessor of Allied New Hampshire Gas Company. The Allied New Hampshire Gas Company was eventually merged into Northern Utilities.

At its peak in 1917, the plant was supplying Rochester, East Rochester, Gonic, Somersworth, and Berwick, Maine. Available information indicates that the plant ceased production in 1928, when Rochester's former Manufactured Gas Plant began supplying Somersworth and the surrounding area. The plant appears to have been demolished during the 1930s. Northern constructed a high-pressure Horton Sphere (gas ball) at the site in the late 1940s for storage of propane and natural gas from a high-pressure main. The Horton Sphere was in operation into the 1980s, when it was decommissioned and removed off-site.

8. LISTING AND STATUS OF INSURANCE AND 3RD PARTY LAWSUITS AND SETTLEMENTS: None

NAME OF SUIT: Not Applicable

DATE FILED: Not Applicable

STATUS (PENDING/SETTLED): Not Applicable